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Abstract

The covariance between US Treasury bond returns and stock returns has moved
considerably over time. While it was slightly positive on average in the period 1953—
2014, it was unusually high in the early 1980’s and negative in the early 21st Century,
particularly in the downturns of 2001 and 2007—09. This paper specifies and estimates
a model in which the nominal term structure of interest rates is driven by four state
variables: the real interest rate, temporary and permanent components of expected
inflation, and the nominal-real covariance of inflation and the real interest rate with
the real economy. The last of these state variables enables the model to fit the
changing covariance of bond and stock returns. In the model, a high nominal-real
covariance implies a high term premium and a concave yield curve. The decline in this
covariance since the early 1980s has driven down our model-implied term premium
on 10-year zero-coupon nominal Treasury bonds by about 2 percentage points.



1 Introduction

In recent years investors have come to regard US Treasury bonds as hedges, assets
that perform well when other assets lose value, and more generally when bad macro-
economic news arrives. During both of the two most recent recessions, in 2001
and 2007—09, Treasury bonds performed well. In addition, since the turn of the
century and particularly during these downturns, Treasury bond returns have been
negatively correlated with stock returns at a daily frequency. In previous decades,
however, Treasury bonds performed very differently; they were either uncorrelated or
positively correlated with stock returns. The purpose of this paper is to highlight
these changes in magnitude and switches in sign of the covariation between bonds
and stocks, and to ask what they imply for bond risk premia and the shape of the
term structure of interest rates.

To understand how a changing bond-stock covariance can affect the pricing of
Treasury bonds, we specify and estimate a multifactor term structure model that
incorporates traditional macroeconomic influences– real interest rates and expected
inflation– along with a state variable driving the variance of real and nominal interest
rates and their covariance with the macroeconomy. The model is set up so that all
factors have an economic interpretation, and the covariance of bond returns with the
macroeconomy can switch sign. To isolate the effect of the changing bond-stock
covariance, the model assumes a constant price of risk, or equivalently a constant
variance for the stochastic discount factor. We estimate the model using quarterly
US time series, beginning in 1953 where possible and ending in 2014, for nominal and
inflation-indexed bond yields, stock returns, realized and forecast inflation, and the
realized second moments of bond and stock returns calculated from daily data within
each quarter. The use of realized second moments, unusual in the term structure
literature, forces our model to fit the historically observed changes in risks.

Our model shows that the risk premia of nominal Treasury bonds should have
changed over the decades because of changes in the covariance between inflation and
the real economy. The model predicts positive nominal bond risk premia in the early
1980s, when bonds covaried positively with stocks, and negative risk premia in the
2000s and particularly during the downturn of 2007—09, when bonds hedged equity
risk. The maximum risk premium we estimate on a 10-year nominal zero-coupon
Treasury bond is about 1.2% in 1980Q3, and the minimum is about -0.8% in 2008Q3.
Thus the model generates a historical spread of about 2 percentage points in bond
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risk premia at this maturity.

A second implication of our model is that high bond risk premia are associated
with a concave term structure of interest rates, specifically high interest rates at a
maturity around 3 years relative to short- and long-term interest rates. In the model,
a high bond-stock covariance implies a high volatility of bond returns. The high bond-
stock covariance generates a high term premium and a steep yield curve at maturities
of 1-3 years, while the high bond volatility lowers long-term yields through a Jensen’s
inequality or convexity effect. Thus, the concavity of the yield curve is correlated
with the bond-stock covariance. In this fashion, our model explains the qualitative
finding of Cochrane and Piazzesi (2005) that a tent-shaped linear combination of
forward rates, with a peak at about 3 years, predicts excess bond returns at all
maturities. However, the model also implies that many other factors affect the shape
of the yield curve, so the predictability of bond returns from the Cochrane-Piazzesi
factor is quite weak in the model. In other words, by incorporating only changes in
the quantity of bond risk and ignoring time-variation in the price of bond risk, our
model captures low-frequency variation in term premia associated with the changing
bond-stock covariance, but misses some high-frequency variation in term premia.

To illustrate the basic observation that motivates this paper, Figure 1 plots the
history of the realized covariance of 10-year nominal zero-coupon Treasury bonds with
the CRSP value-weighted stock index, calculated using a rolling three-month window
of daily data. For ease of interpretation, the figure also shows the history of the
realized beta of Treasury bonds with stocks (the bond-stock covariance divided by
the realized variance of stock returns), as this allows a simple back-of-the-envelope
calculation of the term premium that would be implied by the simple Capital Asset
Pricing Model (CAPM) given any value for the equity premium. The covariance
(plotted on the left vertical scale) and beta (on the right vertical scale) move closely
together, with the major divergences occurring during periods of low stock return
volatility in the late 1960s and the mid-1990s.

Figure 1 displays a great deal of high-frequency variation in both series, much
of which is attributable to noise in realized second moments. But it also shows
substantial low-frequency movements. The beta of bonds with stocks was close to
zero in the mid-1960’s and mid-1970’s, much higher with an average around 0.4 in
the 1980’s, spiked in the mid-1990’s, and declined to negative average values in the
2000’s. During the two downturns of 2001 and 2007—09, the average realized beta
of Treasury bonds was about -0.2. Thus from peak to trough, the realized beta of
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Treasury bonds has declined by about 0.6 and has changed its sign. According to the
CAPM, this would imply that term premia on 10-year zero-coupon Treasuries should
have declined by 60% of the equity premium.

Nominal bond returns respond both to expected inflation and to real interest rates.
A natural question is whether the pattern shown in Figure 1 reflects a changing co-
variance of inflation with the stock market, or a changing covariance of real interest
rates with the stock market. The data suggest that both factors play a role. To
illustrate the importance of inflation, Figure 2 plots the covariance and beta of infla-
tion shocks with stock returns, using a rolling three-year window of quarterly data
and a first-order quarterly vector autoregression for inflation, stock returns, and the
three-month Treasury bill yield to calculate inflation shocks. Because high inflation
is associated with high bond yields and low bond returns, the figure shows the covari-
ance and beta for realized deflation shocks (the negative of inflation shocks) which
should move in the same manner as the bond return covariance and beta reported in
Figure 1. Indeed, Figure 2 shows a similar history for the deflation covariance as for
the nominal bond covariance.

Real interest rates also play a role in changing nominal bond risks. Since long-
term Treasury inflation-protected securities (TIPS) were first issued in 1997, TIPS
have had a predominantly negative beta with stocks as Campbell, Shiller, and Viceira
(2009) emphasize and we illustrate below in Figure 4. Like the nominal bond beta, the
TIPS beta was particularly negative in the downturns of 2001 and 2007—09. Thus not
only the stock-market covariances of nominal bond returns, but also the covariances
of two proximate drivers of those returns, inflation and real interest rates, change over
time and occasionally switch sign. We design our term structure model to fit these
facts.

The organization of the paper is as follows. Section 2 briefly reviews the related
literature. Section 3 presents our model of the real and nominal term structures of
interest rates. Section 4 describes our estimation method and presents parameter
estimates and historical fitted values for the unobservable state variables of the model.
Section 5 discusses the implications of the model for the shape of the yield curve and
the movements of risk premia on nominal bonds. Section 6 concludes. An Appendix
to this paper available online (Campbell, Sunderam, and Viceira 2016) presents details
of the model solution and additional empirical results.
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2 Literature Review

Despite the striking movements in the bond-stock covariance illustrated in Figure 1,
this second moment has received relatively little attention in the enormous literature
on the term structure of interest rates.2 One reason for this neglect may be that
until the last 15 years, the covariance was almost always positive and thus it was
not apparent that it could switch sign. In the absence of a sign switch, a model
of changing bond market volatility, with a constant correlation or even a constant
covariance between bonds and stocks, might be adequate.

The early literature on the term structure of interest rates concentrated on testing
the null hypothesis of constant bond risk premia, also known as the expectations
hypothesis of the term structure (Shiller, Campbell, and Schoenholtz 1983, Fama
and Bliss 1987, Stambaugh 1988, Campbell and Shiller 1991). Second-generation
affi ne term structure models such as Cox, Ingersoll, and Ross (1985) modeled changes
in bond market volatility and risk premia linked to the short-term interest rate.
This approach encounters the diffi culty that bond market volatility appears to move
independently of the level of interest rates. In addition, the empirical link between
bond market volatility and the expected excess bond return is weak, although some
authors such as Campbell (1987) do estimate it to be positive.3

In the last ten years a large literature has specified and estimated essentially
affi ne term structure models (Duffee 2002), in which a changing price of risk can
affect bond market risk premia without any change in the quantity of risk, while
risk premia are linear functions of bond yields (Dai and Singleton 2002, Sangvinatsos
and Wachter 2005, Wachter 2006, Buraschi and Jiltsov 2007, Bekaert, Engstrom, and
Xing 2009, Bekaert, Engstrom, and Grenadier 2010). Models such as those of Dai
and Singleton (2002) and Sangvinatsos and Wachter (2005) achieve a good fit to
the historical term structure, but this literature uses latent factors that are hard to
interpret economically.

2Exceptions in the last decade include Guidolin and Timmermann (2006), Christiansen and
Ranaldo (2007), David and Veronesi (2009), Baele, Bekaert, and Inghelbrecht (2010), and Viceira
(2012).

3More recently, Piazzesi and Schneider (2006) and Rudebusch and Wu (2007) have built affi ne
models of the nominal term structure in which a reduction of inflation uncertainty drives down the
risk premia on nominal bonds towards the lower risk premia on inflation-indexed bonds. Similarly,
Backus and Wright (2007) argue that declining uncertainty about inflation explains the low yields
on nominal Treasury bonds in the mid-2000’s.
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Some papers have extended the essentially affi ne approach to model stock and
bond prices jointly (d’Addona and Kind 2006, Bekaert, Engstrom, and Grenadier
2010). Eraker (2008) and Bansal and Shaliastovich (2013) price both stocks and
bonds using the consumption-based long-run risks model of Bansal and Yaron (2004).
However, while some of these papers allow the bond-stock covariance to move over
time, none of them allow it to change sign.4

In this paper we want to model a time-varying covariance between state variables
and the stochastic discount factor, which can switch sign, and we want out state
variables to be interpretable macroeconomic variables. We take a direct approach
and write a linear-quadratic term structure model like those of Beaglehole and Tenney
(1991), Constantinides (1992), Ahn, Dittmar and Gallant (2002), Leippold and Wu
(2003), and Realdon (2006). To solve our model, we use a general result on the
expected value of the exponential of a non-central chi-squared distribution which we
take from the Appendix to Campbell, Chan, and Viceira (2003). To estimate the
model, we use a nonlinear filtering technique, the unscented Kalman filter, proposed
by Julier and Uhlmann (1997) and reviewed by Wan and van der Merwe (2001).5

The filtering method we use for estimation can easily handle data series that are
missing for part of our sample period. This allows us to include measurement equa-
tions for inflation-indexed bond yields and professional survey forecasts of inflation,
during the period in which these variables are observed. In this way we can con-
tribute to the literature on inflation-indexed bond yields and inflation forecasting
(Gürkaynak, Sack, and Wright 2008, Campbell, Shiller, and Viceira 2009, Pflueger
and Viceira 2011). Campbell, Shiller, and Viceira (2009) draws on an early un-
published version of this paper to present selected estimation results for our model,
highlighting its implications for TIPS yields.

4Time-variation in the bond-stock covariance is also largely ignored by empirical papers such
as Chen, Roll, and Ross (1986), Ferson and Harvey (1991), Fama and French (1993), and Koijen,
Lustig, and Van Niewerburgh (2014) that specify reduced-form factor models, including both bond
and equity factors, in order to price both bond and equity test assets. The same is true of a small
empirical literature that decomposes nominal bond returns into shocks to real interest rates, inflation
expectations, and risk premia, and estimates the covariances of these components with stock returns
(Barsky 1989, Shiller and Beltratti 1992, Campbell and Ammer 1993).

5It is possible to embed linear-quadratic models within the affi ne class by augmenting the state
vector, as pointed out by Duffi e and Kan (1996) and Cheng and Scaillet (2007). In this spirit,
Buraschi, Cieslak, and Trojani (2008) expand the state space of a nonlinear term structure model
to obtain an affi ne model in which correlations can switch sign. We do not pursue this approach
here as we do not need it to solve the model or to characterize the dynamics of our state variables.
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3 A Quadratic Bond Pricing Model

We now present a term structure model that allows for time variation in the covari-
ances between real interest rates, inflation, and the real economy. In the model,
both real and nominal bond yields are linear-quadratic functions of the vector of
state variables and, consistent with the empirical evidence, the conditional volatili-
ties and covariances of excess returns on real and nominal assets are time varying. To
highlight the effects of these changing conditional second moments on bond risk pre-
mia, we assume that the price of risk is constant, or equivalently that the stochastic
discount factor is homoskedastic.

3.1 The SDF and the real term structure

We start by assuming that the log of the real stochastic discount factor (SDF),mt+1 =
log (Mt+1), follows the process:

−mt+1 = xt +
σ2
m

2
+ εm,t+1. (1)

As we have emphasized, the SDF innovation εm,t+1 in equation (1) is homoskedastic.6

The drift xt, however, follows an AR(1) process subject to both a heteroskedastic
shock ψtεx,t+1 and a homoskedastic shock εX,t+1:

xt+1 = µx (1− φx) + φxxt + ψtεx,t+1 + εX,t+1. (2)

The innovations εm,t+1, εx,t+1, and εX,t+1 are normally distributed, with zero means
and constant variance-covariance matrix. We allow these shocks to be cross-correlated
and adopt the notation σ2

i to describe the variance of shock εi, and σij to describe the
covariance between shock εi and shock εj. To reduce the complexity of the equations
that follow, we assume that the shocks to xt are orthogonal to each other; that is,
σxX = 0.

6We have developed and estimated an extension of the model with a heteroskedastic SDF. Details
of this more general model are available from the authors upon request. The more general speci-
fication captures the spirit of recent term structure models by Bekaert et al (2005), Buraschi and
Jiltsov (2007), Wachter (2006) and others in which time-varying risk aversion drives time-varying
bond risk premia.
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The state variable xt is the short-term log real interest rate. The price of a
single-period zero-coupon real bond satisfies P1,t = Et [exp {mt+1}] ,so that its yield
y1t = − log(P1,t) equals

y1t = −Et [mt+1]− 1

2
Vart (mt+1) = xt. (3)

The model has an additional state variable, ψt, which governs time variation in
the volatility of the real interest rate and its covariation with the SDF.7 We assume
that ψt follows a standard homoskedastic AR(1) process:

ψt+1 = µψ
(
1− φψ

)
+ φψψt + εψ,t+1. (4)

Importantly, this process can change sign, so the covariance of the real interest rate
with the SDF and the price of real interest rate risk can be either positive or negative.
Because the model is observationally equivalent when both ψt and the shocks it
multiplies switch sign, without loss of generality we normalize the model such that
ψt has a positive mean.

8

We allow for two shocks in the real interest rate because a single shock would
imply a constant Sharpe ratio for real bonds. With only a heteroskedastic shock,
the model would also imply that the conditional volatility of the real interest rate
would be proportional to the covariance between the real interest rate and the real
SDF; equivalently, the conditional correlation of the real rate and the SDF would
be constant in absolute value with occasional sign switches. Our specification avoids
these implausible implications while remaining reasonably parsimonious.

In this model, the log prices of real bonds are linear in xt and quadratic in ψt:

pn,t = An +Bx,nxt +Bψ,nψt + Cψ,nψ
2
t , (5)

7In an earlier version of this paper we assumed a homoskedastic process for the real interest
rate, writing a model in which ψt only affects inflation and nominal interest rates. This generates
a simpler affi ne real term structure of interest rates, but is inconsistent with time-variation in the
covariance between TIPS returns and the real economy documented in this paper and by Campbell,
Shiller, and Viceira (2009).

8Since ψt appears in the model as a multiplier for shocks whose variances are free parameters,
the model also requires a normalization assumption to set the scale of ψt. We choose to normalize
the variance of shocks to realized inflation to one, leaving the variance of shocks to ψt as a free
parameter.
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where the coeffi cients An, Bx,n, Bψ,n, and Cψ,n solve a set of recursive equations given
in the Appendix. These coeffi cients are functions of the maturity of the bond (n) and
the coeffi cients that determine the stochastic processes for the state variables. From
equation (3), Bx,1 = −1 and the remaining coeffi cients are zero at n = 1.

The conditional risk premium on a two-period real bond is linear in ψt:

Et [r2,t+1 − r1,t+1] +
1

2
Vart (r2,t+1 − r1,t+1) = −(σXm + σxmψt). (6)

To gain intuition about this risk premium, consider the simple case where σXm = 0,
σxm < 0, and ψt > 0. In this case the risk premium on a two-period real bond is
positive, because with negative σxm and positive ψt, the real interest rate tends to rise
in bad times and fall in good times. Since real bond returns move opposite the real
interest rate, a two-period real bond is then a procyclical risky asset that commands
a positive risk premium. However, if ψt changes sign and becomes negative, with
the same fixed value of σxm the real interest rate tends to rise in good times and fall
in bad times. This makes a two-period real bond a countercyclical asset that hedges
against an economic downturn and commands a negative risk premium.

The conditional risk premium on an n-period bond, for n > 2, is no longer linear
in ψt because of the quadratic term in equation (5). Empirically, however, the degree
of nonlinearity is slight as we show in our empirical analysis below, and risk premia on
real bonds of all maturities have the same sign as the risk premium on a two-period
real bond.

3.2 Inflation and the nominal term structure

To price nominal bonds, we need a model for inflation. We assume that log inflation
πt = log (Πt) follows a linear-quadratic conditionally heteroskedastic process:

πt+1 = λt + ξt +
σ2
π

2
ψ2
t + ψtεπ,t+1, (7)

where ψt is given in (4) and expected log inflation is the sum of two components, a
permanent component λt and a transitory component ξt.

The dynamics of these components are given by

λt+1 = λt + εΛ,t+1, (8)
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and
ξt+1 = φξξt + ψtεξ,t+1. (9)

The presence of an integrated component in expected inflation removes the need to
include a nonzero mean in the stationary component of expected inflation.

We assume that the underlying shocks to realized inflation, the components of ex-
pected inflation, and conditional inflation volatility– επ,t+1, εΛ,t+1, εξ,t+1, and εψ,t+1–
are again jointly normally distributed zero-mean shocks with a constant variance-
covariance matrix. We allow these shocks to be cross-correlated with the shocks to
mt+1 and xt+1. We normalize the standard deviation of realized inflation shocks, σπ,
to one, but as already mentioned this is without loss of generality as ψt multiplies
this shock and has a freely estimated standard deviation.

Our inclusion of two components of expected inflation gives our model the flexi-
bility it needs to fit both persistent variation in long-term nominal interest rates and
inflation, and transitory variation in short rates relative to long rates. The former
requires persistent variation in expected inflation, while the latter requires transitory
variation in some state variable. The persistence and volatility of the long-term
inflation-indexed bond yield implies that the real interest rate is highly persistent, so
under our assumption that a single AR(1) process drives the real interest rate, we
need a transitory component of expected inflation to generate changes in the slope of
the nominal yield curve.9

We use the same state variable ψt that drives changing volatility in the real term
structure to drive changes in inflation volatility. This keeps our model parsimonious
while capturing the inflation heteroskedasticity first modelled by Engle (1982) in a
manner consistent with the common movements of nominal and inflation-indexed
bond volatility documented by Campbell, Shiller, and Viceira (2009).10

9There are other specifications that could be used to fit these facts. We impose a unit root on the
persistent component of expected inflation for convenience of model analysis and estimation, but a
near-unit root would also be viable. Regime-switching models offer an alternative way to reconcile
persistent fluctuations with stationary long-run behavior of interest rates (Garcia and Perron 1996,
Gray 1996, Bansal and Zhou 2002, Ang, Bekaert, and Wei 2008). We could also allow the real
interest rate to have both a persistent and transitory component, in which case expected inflation
could be purely persistent. Our specification is consistent with Cogley, Primiceri, and Sargent (2010)
and generalizes Stock and Watson (2007) to allow some persistence in the stationary component of
inflation. Mishkin (1990) presents evidence that bond yield spreads forecast future changes in
inflation, which is also consistent with our specification.
10Although not reported in the article, the correlation in their data between the volatility of
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Equation (8) allows only a homoskedastic shock εΛ,t+1 to impact the permanent
component of expected inflation, while equation (9) allows only a heteroskedastic
shock εξ,t+1 to impact the temporary component of expected inflation. We need at
least one homoskedastic and one heteroskedastic shock to components of the inflation
process for reasons similar to those that lead us to assume one shock of each type to
the real interest rate process. We have experimented with allowing multiple shocks,
both homoskedastic and heteroskedastic, to both components of inflation but have
found that such a model is only weakly identified. For parsimony, therefore, we allow
only a homoskedastic shock to long-term expected inflation and only heteroskedastic
shocks to transitory expected and realized inflation.

The process for realized inflation, equation (7), is formally similar to the process
for the log SDF (1) in that it includes a quadratic term. This term simplifies the
process for the reciprocal of inflation by making the log of the conditional mean of
1/Πt+1 the negative of the sum of the two state variables λt and ξt. This in turn
simplifies the pricing of short-term nominal bonds.

The real cash flow on a single-period nominal bond is simply 1/Πt+1. Thus the
price of the bond is given by P $

1,t = Et [exp {mt+1 − πt+1}] ,so the log short-term
nominal rate y$

1,t+1 = − log
(
P $

1,t

)
is

y$
1,t+1 = −Et [mt+1 − πt+1]− 1

2
Vart (mt+1 − πt+1)

= xt + λt + ξt − σmπψt. (10)

The log nominal short rate is the sum of the log real interest rate, the two state
variables that drive expected log inflation, and a term that accounts for the correlation
between shocks to inflation and shocks to the stochastic discount factor. This term,
−σmπψt, is the expected excess return on a single-period nominal bond over a single-
period real bond so it measures the inflation risk premium at the short end of the
term structure.

The log price of a n-period zero-coupon nominal bond is a linear-quadratic function
of the vector of state variables:

p$
n,t = A$

n +B$
x,nxt +B$

λ,nλt +B$
ξ,nξt +B$

ψ,nψt + C$
ψ,nψ

2
t , (11)

where the coeffi cients A$
n, B

$
i,n, and C

$
i,n solve a set of recursive equations given in

nominal US Treasury bond returns and the volatility of TIPS returns is slightly greater than 0.7.
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the Appendix. From equation (10), B$
x,1 = B$

ξ,1 = B$
λ,1 = −1, C$

zψ,1 = σmπ, and the
remaining coeffi cients are zero at n = 1.

Like risk premia in the real term structure, risk premia in the nominal term
structure are increasing in ψt and are approximately (but not exactly) linear in ψt.
When ψt > 0, realized inflation and transitory expected inflation are countercyclical,
so nominal bonds are procyclical and investors demand a positive risk premium to
hold them. When ψt < 0, these components of inflation are procyclical, so nominal
bonds are countercyclical and become desirable hedges against business cycle risk.

3.3 Pricing equities

We want our model to fit the changing covariance of bonds and stocks, and so we must
specify a process for the equity return within the model. One modelling strategy
would be to specify a dividend process and solve for the stock return endogenously
in the manner of Bekaert et al. (2005), d’Addona and Kind (2006), and Campbell,
Pflueger, and Viceira (2015). However we adopt a simpler approach. Following
Campbell and Viceira (2001), we model shocks to realized stock returns as a linear
combination of shocks to the real interest rate and shocks to the log stochastic discount
factor:

re,t+1 − Et re,t+1 = βexεx,t+1 + βeXεX,t+1 + βemεm,t+1 + εe,t+1, (12)

where εe,t+1 is an identically and independently distributed shock uncorrelated with
all other shocks in the model. This shock captures movements in equity returns that
are both unrelated to real interest rates and carry no risk premium because they are
uncorrelated with the SDF.

Substituting (12) into the no-arbitrage condition Et [Mt+1Rt+1] = 1, the Appendix
shows that the equity risk premium is given by

Et [re,t+1 − r1,t+1] +
1

2
Vart (re,t+1 − r1,t+1) = βexσxm + βeXσXm + βemσ

2
m. (13)

The equity premium depends not only on the direct sensitivity of stock returns to
the SDF, but also on the sensitivity of stock returns to the real interest rate and the
covariance of the real interest rate with the SDF.

Equation (12) does not attempt to capture heteroskedasticity in stock returns.
Although such heteroskedasticity is of first-order importance for understanding stock
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prices, we abstract from it here in order to maintain the parsimony of our term struc-
ture model. Moreover, as Figure 1 shows, the stock-bond covariance and the stock-
bond beta move closely together, indicating that our assumption of homoskedastic
stock returns is not overly restrictive for the purposes of studying the quantity of risk
in nominal bonds.

The conditional covariance between the SDF and inflation also determines the
covariance between the excess returns on real and nominal assets. Consider for
example the conditional covariance between the real return on a one-period nominal
bond and the real return on equities, both in excess of the return on a one-period real
bond. This covariance is given by

Covt
(
re,t+1 − r1,t+1, y

$
1,t+1 − πt+1 − r1,t+1

)
= − (βexσxπ + βemσmπ)ψt,

which moves over time and can change sign. This implies that we can identify the
dynamics of the state variable ψt from the dynamics of the conditional covariance
between equities and nominal bonds as well as real bonds.

4 Model Estimation

4.1 Data and estimation methodology

The term structure model presented in Section 3 generates bond yields which are
linear-quadratic functions of a vector of latent state variables. We now use this model
to study the postwar history of yields on US Treasury nominal and inflation-indexed
bonds. Since our state variables are not observable, and the observable series have
a nonlinear dependence on the latent state variables, we obtain maximum likelihood
estimates of our model’s parameters via a nonlinear Kalman filter. Specifically, we
use the unscented Kalman filter estimation procedure of Julier and Uhlmann (1997).

The unscented Kalman filter is a nonlinear Kalman filter which works through
deterministic sampling of points in the distribution of the innovations to the state
variables, does not require the explicit computation of Jacobians and Hessians, and
captures the conditional mean and variance-covariance matrix of the state variables
accurately up to a second-order approximation for any type of nonlinearity, and up
to a third-order approximation when innovations to the state variables are Gaussian.
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Wan and van der Merwe (2001) describe in detail the properties of the filter and its
practical implementation.

To implement the unscented Kalman filter, we specify a system of twelve mea-
surement equations that relate observable variables to the vector of state variables.
We sample the data at a quarterly frequency in order to minimize the impact of high-
frequency noise in the measurement of some of our key variables– such as realized
inflation– while keeping the frequency of observation reasonably high (Campbell and
Viceira 2001, 2002). By not having to fit all the high-frequency monthly variation in
the data, our estimation procedure can concentrate on uncovering the low-frequency
movements in interest rates which our model is designed to capture.

Our first four measurement equations relate observable nominal bond yields to the
vector of state variables, as in equation (11). We use yields on constant maturity 3-
month, 1-year, 3-year, and 10-year zero-coupon nominal bonds sampled at a quarterly
frequency for the period 1953Q1-2014Q4. These data are spliced together from two
sources. From 1953Q1-1961Q1 we sample quarterly from the monthly dataset devel-
oped by McCulloch and Kwon (1993), and from 1961Q2-2014Q4 we sample quarterly
from the daily dataset constructed by Gürkaynak, Sack, and Wright (GSW 2006,
updated through 2014). We assume that bond yields are measured with errors, which
are uncorrelated with each other and with the structural shocks of the model.

Our fifth measurement equation, (7), relates the observed inflation rate to ex-
pected inflation and inflation volatility, plus measurement error. We use the CPI as
our observed price index in this measurement equation. We complement this mea-
surement equation with another one that uses data on the median forecast of GDP
deflator inflation one quarter ahead from the Survey of Professional Forecasters for the
period 1968Q4-2014Q4. We relate this observed measure of expected inflation to the
sum of equations (8) and (9) in our model plus measurement error. Before 1968Q4,
we treat the survey forecast of inflation as missing, which can easily be handled by
the Kalman filter estimation procedure.

The seventh measurement equation relates the observed yield on constant maturity
Treasury inflation protected securities (TIPS) to the vector of state variables, via the
pricing equation for real bonds (5). We obtain data on constant maturity zero-coupon
10-year TIPS dating back to 1999Q1 from GSW (2008). Before 1999, we treat the
TIPS yield as missing, and as with nominal bond yields, we assume that real bond
yields are measured with errors.
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Figure 3 illustrates our real bond yield series. The decline in the TIPS yield
since the year 2000, and the spike in the fall of 2008, are clearly visible in this figure.
Campbell, Shiller, and Viceira (2009) document that this decline in the long-term
real interest rate, and the subsequent sudden increase during the financial crisis,
occurred in inflation-indexed bond markets around the world. In earlier data from
the UK, long-term real interest rates were much higher on average during the 1980’s
and 1990’s. Our model will explain such large and persistent variation in the TIPS
yield primarily using persistent movements in the short-term real interest rate.

Our eighth measurement equation uses equity returns from the CRSP value-
weighted index comprising the stocks traded in the NYSE, AMEX, and NASDAQ.
This equation describes realized log equity returns re,t+1 using equations (12) and
(13).

The last four measurement equations use the implications of our model for: (i)
the conditional covariance between equity returns and real bond returns, (ii) the con-
ditional covariance between equity returns and nominal bond returns, (iii) the con-
ditional volatility of real bond returns, and (iv) the conditional volatility of nominal
bond returns. The Appendix derives expressions for these time-varying conditional
second moments, which are functions of ψt and therefore help us filter this state vari-
able. Following Viceira (2012), we construct the analogous realized second moments
using high-frequency data. We obtain daily stock returns from CRSP and calculate
daily nominal bond returns from daily GSW nominal yields from 1961Q2 onwards,
and daily real bond returns from daily GSW real yields from 1999Q1 onwards.11 We
then compute the variances and covariances realized over quarter t.

Realized variances and covariances in quarter t are expected variances and covari-
ances at quarter t − 1, plus shocks realized in quarter t. Unfortunately we cannot
treat such shocks as pure measurement error because they may be contemporaneously
correlated with innovations to the state variables of our model.12 Accordingly we
project realized variances and covariances onto information known at quarter t − 1,
and treat the fitted values as the conditional (expected) moments at quarter t−1 plus
measurement error. For each realized variance and covariance, we use three pieces
of information known at quarter t − 1: the lagged value of the realized variance or

11We calculate daily returns on the n year bond from daily yields as rn,t+1 = nyn,t −
(n− 1/264) yn,t+1. We assume there are 264 trading days in the year, or 22 trading days per month.
Prior to 1961:2, we calculate monthly returns from monthly McCulloch-Kwon nominal yields, and
calculate variances and covariances using a rolling 12-month return window.
12We thank an anonymous referee for pointing out this issue.
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covariance, the 3-month nominal Treasury yield, and the spread between the 10-year
nominal yield and the 3-month nominal yield. Viceira (2012) shows these variables
have strong predictive power for the realized second moments at quarter t. We also
note that, because the realized second moments are persistent, the fitted values are
quite similar to the realized second moments at quarter t.

The data used in these measurement equations are plotted in Figure 4. The two
panels at the left show the projected covariances between daily stock and bond returns
for nominal bonds (above) and inflation-indexed bonds (below, over a shorter sample),
while the two panels at the right show the projected variances of daily nominal and
real bond returns. The thick lines in each panel show a smoothed version of the raw
data.

Figure 4 shows that both the stock-nominal bond covariance series and the nominal
bond variance series increase in the early 1970’s and, most dramatically, in the early
1980’s. In the 1950’s, and again in the 2000’s, the stock-nominal bond covariance
was negative, with downward spikes in the two recessions of the early 2000’s and the
late 2000’s. The bottom part of the figure shows that the stock-real bond covariance
series and the real bond variance series follow patterns similar to those of nominal
bonds for the overlapping sample period.

Our model has a large number of shocks, and we have found that many of the co-
variances between these shocks are only very weakly identified, so that setting them to
zero does not materially affect the empirical results. For parsimony we constrain some
of these weakly identified covariances. The unconstrained parameters are the covari-
ances of all shocks with the stochastic discount factor (σxm, σXm, σΛm, σξm, σψm, σπm),
which are important because they determine the risk premia for different types of risk;
and the covariance of the transitory component of expected inflation with realized
inflation (σξπ), which helps to deliver realistic dynamics for inflation and nominal
interest rates. Other covariances, including all the covariances between shocks to the
real interest rate and shocks to realized and expected inflation, are set to zero.

4.2 Parameter estimates

Table 1 Panel A presents quarterly parameter estimates over the period 1953Q1-
2014Q4 and their asymptotic standard errors, calculated numerically using the outer
product method. Panel A reports first means, then persistence coeffi cients, then shock
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volatilities, then loadings of stock returns on shocks, and finally those correlations
between shocks that are estimated freely and not restricted to equal zero.13 Table 1
Panel B converts the estimated shock volatilities into average conditional volatilities
of the state variables.

The real interest rate is the most persistent state variable, with an autoregres-
sive coeffi cient of 0.97 corresponding to a half life of about six years. This persistence
reflects the observed variability and persistence of TIPS yields. The transitory compo-
nent of expected inflation and the nominal-real covariance are less persistent processes
in our model, with half-lives of about six and five quarters respectively. Of course
the model also includes a permanent component of expected inflation. If we model
expected inflation as a single stationary AR(1) process, as we did in the first version
of this paper, we find expected inflation to be more persistent than the real interest
rate. All persistence coeffi cients are precisely estimated, with very small standard
errors.

The shock volatilities reported in panel A are fairly precisely estimated and vary
considerably across shocks. Restating them in panel B as average one-quarter con-
ditional volatilities of the annualized state variables for ease of interpretation, the
estimated one-quarter conditional volatility of the homoskedastic shock to the annu-
alized real interest rate is 32 basis points, and the average one-quarter conditional
volatility of the heteroskedastic shock to the annualized real interest rate is 42 basis
points. The conditional volatility of the homoskedastic permanent shock to annu-
alized expected inflation is 27 basis points, the average conditional volatility of the
heteroskedastic transitory shock to annualized expected inflation is 57 basis points,
and the average conditional volatility of the heteroskedastic shock to annualized re-
alized inflation is 209 basis points. All these numbers are plausible for quarterly
innovation volatilities. Of course, the unconditional standard deviations of the real
interest rate and the two components of expected inflation are much larger because
of the high persistence of the processes; in fact, the unconditional standard deviation
of the permanent component of expected inflation is undefined because this process
has a unit root.

Returning to panel A, we estimate a large and statistically significant positive
loading of stock returns on shocks to the negative of the log SDF (βem). Naturally

13We report correlations instead of covariances to facilitate interpretation. We compute their
standard errors from those of the primitive parameters of the model using the delta method. The
Appendix reports covariances and their asymptotic standard errors.
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this estimate implies a positive equity risk premium.14 We also estimate a sta-
tistically significant positive loading βeX of stock returns on homoskedastic shocks
to the real interest rate, consistent with the tendency in recent data for real inter-
est rates to decline during stock market downturns. The loading of stock returns
on heteroskedastic shocks to the real interest rate is much smaller and statistically
insignificant.

There is a statistically significant correlation of −0.19 between ξ and −m shocks.
Since ξ shocks are heteroskedastic, this negative correlation implies that the tran-
sitory component of expected inflation is countercyclical, generating a positive risk
premium in the nominal term structure, when the state variable ψt is positive; but
transitory expected inflation is procyclical, generating a negative risk premium, when
ψt is negative. In addition, we estimate a marginally statistically significant neg-
ative correlation of almost −0.29 between x and −m shocks. Since x shocks are
heteroskedastic shocks to the real interest rate, this similarly implies a time-varying
term premium on real bonds that is positive when ψt is positive.

The estimated correlations with −mt of other shocks to the term structure, the
homoskedastic shocks X and Λ and realized inflation π, are all very small and sta-
tistically insignificant. This implies that bond risk premia are not just linear in ψt
but almost proportional to it, and that short-term inflation risk is almost unpriced,
so nominal three-month Treasury bills have an almost zero inflation risk premium.

Finally, we estimate a strongly positive and statistically significant correlation of
0.69 between ψt and −mt shocks. This implies that bonds tend to become better
hedges (more negatively correlated with stocks) in bad times, consistent with recent
experience during the global financial crisis although contrary to the pattern observed
in the 1980s.15

14However, the equity premium in the model is substantially lower than in the data. Our estimates
imply a maximum Sharpe ratio of 14%, while the Sharpe ratio for equities in our data is 40%. The
estimation routine prefers to trade a counterfactually low maximum Sharpe ratio to improve the
model’s fit along other dimensions. In particular, raising the Sharpe ratio creates counterfactually
high bond return volatilities.
15In earlier versions of this paper, with data ending in 2009, we estimated a slightly positive

correlation between ψt and −mt shocks. Since bond risk premia rise with the quantity of risk, the
short-sample finding was consistent with Ludvigson and Ng (2009), who report evidence that bond
risk premia are countercyclically related to macroeconomic factors.
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4.3 Fitted state variables

How does our model interpret the economic history of the last 60 years? That is, what
time series does it estimate for the underlying state variables that drive bond and
stock prices? Figure 5 shows our estimates of the four state variables in the model,
with the real interest rate xt in the top left panel. The model estimates a process
for the real interest rate that is high on average, with a spike in the early 1980’s,
and becomes more volatile and declining in the second half of the sample. Higher-
frequency movements in the real interest rate were often countercyclical in this period,
as we see the real rate falling in the recessions of the early 1970’s, early 1990’s, early
2000’s, and at the end of our sample period in 2007—09. The real interest rate also
falls around the stock market crash of 1987. However there are important exceptions
to this pattern, notably the very high real interest rate in the early 1980’s, during
Paul Volcker’s campaign against inflation. Since the late 1990’s the real interest rate
generally tracks the TIPS yield, as shown in Figure 3. Thus the model attributes the
history of long-dated TIPS yields mostly to changes in the short-term real rate xt,
with a supporting role for the state variable ψt.

The permanent component of expected inflation, in the top right panel of Figure
5, exhibits a familiar hump shape over the postwar period. It was low, even negative,
in the mid-1950’s, increased during the 1960’s and 1970’s, and reached a maximum
value of about 10% in the first half of the 1980’s. Since then, it has experienced a
secular decline and remained close to 2% throughout the 2000’s. This is consistent
with the stability of professional survey forecasts of inflation, our sixth measurement
variable, during this period.

The transitory component of expected inflation, in the bottom left panel, was par-
ticularly high in the late 1970’s and early 1980’s, indicating that investors expected
inflation to decline gradually from a temporarily high level. The transitory compo-
nent was predominantly negative from the mid 1980’s to the mid 2000’s, implying
that our model attributes the generally high levels of yield spreads during this period
at least partly to investor beliefs that inflation would increase in the future. By esti-
mating a generally negative transitory component of expected inflation, the model is
also able to explain simultaneously the low average nominal short-term interest rate
and the high average real short-term interest rate in this period. During the last ten
years, the transitory component of expected inflation has been more volatile and has
reached positive values once again.
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Finally, the bottom right panel of Figure 5 shows the time series of ψt. As we have
noted, this variable is identified primarily through the covariance of stock returns and
bond returns and the volatility of bond returns– both nominal and real. The state
variable ψt exhibits low volatility and an average close to zero in the period leading
up to the late 1970’s, with briefly negative values in the late 1950’s, and an upward
spike in the early 1970’s. It becomes much more volatile starting in the late 1970’s
through the end of our sample period. It rises to large positive values in the early
1980’s and stays predominantly positive through the 1980’s and 1990’s. However, in
the late 1990’s it switches sign and turns predominantly negative, with particularly
large downward spikes in the period immediately following the recession of 2001 and
in the fall of 2008, at the height of the financial crisis of 2007—09. Thus ψt not only
can switch sign, it has done so during the past twenty years. Overall, the in-sample
average for ψt is positive, consistent with the positive unconditional mean estimated
in Table 1.

The state variables we have estimated can be used to calculate fitted values for
observed variables such as the nominal term structure, real term structure, realized
inflation, analysts’median inflation forecast, and the realized second moments of
bond and equity returns. Generally these fitted values track the observed data
well, because our model is rich enough that it does not require measurement errors
with high volatility to fit the data. As an illustration of this point, the left panels
of Figure 6 show the realized variance of nominal bond returns (top panels) and
covariance between bond and stock returns (bottom panels), along with their values
fitted by the model. The right panels decompose the model-fitted values into the
contributions of the state variable ψt and its square. These panels show that the
bond-stock covariance is linear in ψt, while the behavior of the variance is dominated
by the square ψ2

t .

5 Term Structure Implications

5.1 Moments of bond yields and returns

Although our model fits the observed history of real and nominal bond yields, an im-
portant question is whether it must do so by inferring an unusual history of shocks,
or whether the observed properties of interest rates emerge naturally from the prop-
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erties of the model at the estimated parameter values. In order to assess this, Table
2 reports some important moments of bond yields and returns.

The table compares the sample moments in our historical data with moments cal-
culated by simulating our model 10,000 times along a path that is 250 quarters (or 62
and a half years) long, and averaging time-series moments across simulations. Sam-
ple moments are shown in the first column and model-implied moments in the second
column. The third column reports the fraction of simulations for which the simulated
time-series moment is larger than the corresponding sample moment in the data.
These numbers can be used as informal tests of the ability of the model to fit each
sample moment. Although our model is estimated using maximum likelihood, these
diagnostic statistics capture the spirit of the method of simulated moments (Duffi e
and Singleton 1993, Gallant and Tauchen 1996), which minimizes a quadratic form
in the distance between simulated model-implied moments and sample moments.16

The first two rows of Table 2 report the sample and simulated means for nominal
bond yield spreads, calculated using 3 and 10 year maturities, and the third and
fourth rows look at the volatilities of these spreads. Our model provides a fairly
good fit to yield spreads at the 3-year maturity, but it does somewhat understate the
average 10-year spread and overstate the volatility of this spread.

The next four rows show how our model fits the means and standard deviations
of realized excess returns on 3-year and 10-year nominal bonds. In order to calculate
quarterly realized returns from constant-maturity bond yields, we interpolate yields
between the constant maturities we observe, doing this in the same manner for our
historical data and for simulated data from our models. The model slightly under-
states average realized excess returns, particularly at the 10-year maturity, but this
may not be surprising in a sample period that ends with extremely low interest rates.
It slightly overstates the volatility of realized excess returns at the 3-year maturity.

The next four rows of the table summarize our model description of TIPS yields.
The model generates an average TIPS yield that is much higher than the observed
average, and in fact none of our 10,000 simulations produce an average yield as low
as the one observed in the data. We do not believe this is a serious problem, as our

16In Table 2 the short-term interest rate is a three-month rate and moments are computed using
a three-month holding period. In the Appendix we report a table using a one-year short rate and
holding period. This alternative table follows Cochrane and Piazzesi (2005), and shows us how our
model fits lower frequency movements at the longer end of the yield curve. Results are comparable
to those reported in Table 2.
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estimates imply higher real interest rates earlier in our sample period, before TIPS
were issued, than in the period since 1997 over which we measure the average TIPS
yield. Thus the discrepancy may result in part from the short and unrepresentative
period over which we measure the average TIPS yield in the data.

The model implies a small negative average real yield spread and a positive but tiny
average realized excess return on TIPS. The difference between these two statistics
reflects the effect of Jensen’s Inequality; equivalently, it is the result of convexity
in long-term bonds. The sign of the average risk premium on TIPS results from
our negative estimate of ρxm in Table 1, which implies that the real interest rate is
countercyclical on average.

5.2 Risk premia and the yield curve

In our model, all time variation in bond risk premia is driven by variation in bond risk,
not by variation in the aggregate price of risk. It follows that long bond risk premia
are almost exactly linear in the state variable ψt (with a very slight nonlinearity
arising from the effect of ψ2

t on bond yields). Figure 7 illustrates this fact. The left
panel plots the model’s expected excess return on 3-year and 10-year nominal bonds
over 3-month Treasury bills against ψt. The right panel of the figure shows the term
structure of risk premia as ψt varies from its sample mean to its sample minimum
and maximum. Risk premia spread out rapidly as maturity increases, and 10-year
risk premia vary from -80 to 120 basis points.

The full history of our model’s 10-year term premium is illustrated in Figure 8.
The figure shows fairly stable risk premia close to zero during the 1950’s and 1960’s,
a spike up to about 0.7% in the early 1970’s, and a run up later in the 1970’s to a peak
of about 1.2% in 1980Q3. A long decline in risk premia later in the sample period was
accentuated around the recession of the early 2000’s and during the financial crisis
of 2007—09, bringing the risk premium to its sample minimum of -0.8% in 2008Q3.
This time series reflects the shape in the nominal-real covariance ψt illustrated in the
bottom right panel of Figure 5.

Figure 8 also plots the model’s implied Sharpe ratio on long-term bonds. This
varies between 0.05 and -0.05, with its maximum value about one-third of the model’s
implied Sharpe ratio for equities (as noted above, the model underpredicts the realized
Sharpe ratio on the US stock market during our sample period). It is noticeable that
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the Sharpe ratio does not spike as high during the early 1980’s as the term premium
does, because this was a period of unusually high bond market volatility. Instead,
the Sharpe ratio remains elevated and fairly stable throughout the 1980s, declining
only in the early 1990s. Similarly, the Sharpe ratio is more stable at a negative value
during the global financial crisis and the subsequent economic downturn in the late
2000s.

An important question is how the shape of the yield curve responds to time-
variation in bond risk premia. To isolate the effect of changing ψt, Figure 9 plots the
log real and nominal yield curves generated by our model when ψt is at its in-sample
mean, maximum, and minimum, while all other state variables are at their in-sample
means. Thus the central line describes the yield curve– real or nominal– generated
by our model when all state variables are evaluated at their in-sample mean. For
simplicity we will refer to this curve as the “mean log yield curve.”17

In both panels of Figure 9, increasing ψt from the sample mean to the sample
maximum raises intermediate-term yields and lowers long-term yields, while decreas-
ing ψt to the sample minimum lowers both intermediate-term and long-term yields.
Thus ψt alters the concavity of both the real and nominal yield curves.

The impact of ψt on the concavity of the nominal yield curve results from two fea-
tures of our model. First, nominal bond risk premia increase with maturity rapidly
at intermediate maturities and slowly at longer maturities because intermediate ma-
turities are exposed both to transitory and permanent shocks to expected inflation,
and transitory shocks have greater systematic risk (a stronger correlation with the
stochastic discount factor). When ψt is positive, this generates a steep yield curve
at shorter maturities, and a flatter one at longer maturities. When ψt changes
sign, however, the difference in risk prices pulls intermediate-term yields down more
strongly than long-term yields.

Second, when ψt is far from zero bond returns are unusually volatile, and through
Jensen’s Inequality this lowers the bond yield that is needed to deliver any given ex-
pected simple return. This effect is stronger for long-term bonds; in the terminology
of the fixed-income literature, these bonds have much greater “convexity”than short-

17Strictly speaking this is a misnomer for two reasons. First, the log real and nominal yield curves
are non-linear functions of the vector of state variables. Second, the unconditional mean of the
log nominal yield curve is not even defined, since one of the state variables follows a random walk.
Thus at most we can compute a mean nominal yield curve conditional on initial values for the state
variables.
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or intermediate-term bonds. Therefore extreme values of ψt tend to lower long-term
bond yields relative to intermediate-term yields.

Similar effects operate in the real term structure. Real bond risk premia are
highly sensitive to ψt at intermediate maturities because real interest rate variation
is transitory, and long-term real bonds have high convexity so their yields are driven
down by high levels of bond volatility.

In the Appendix, we conduct similar analyses of term structure responses to our
model’s other state variables. Real interest rate shocks have highly persistent effects
on both the real and nominal yield curve, while the permanent component of expected
inflation shifts the nominal yield curve up and down, and the transitory component
of expected inflation changes the slope of the nominal yield curve. These results can
be related to Litterman and Scheinkman’s (1991) “level”, “slope”, and “curvature”
factors. In our model, the covariance of nominal and real variables ψt primarily
drives the curvature factor while the other state variables primarily move the level
and slope factors. Thus our model implies that the curvature factor should have
predictive power for excess bond returns.

An empirical result of this sort has been reported by Cochrane and Piazzesi (CP,
2005). Using econometric methods originally developed by Hansen and Hodrick
(1983), and implemented in the term structure context by Stambaugh (1988), CP
show that a single linear combination of forward rates is a good predictor of excess
bond returns at a wide range of maturities. CP work with a 1-year holding period
and a 1-year short rate. They find that bond risk premia are high when intermediate-
term interest rates are high relative to both shorter-term and longer-term rates; that
is, they are high when the yield curve is strongly concave.

Our model interprets this phenomenon as the result of changes in the nominal-real
covariance ψt. As ψt increases, the risk premium for transitory expected inflation
rises. This strongly increases the intermediate-term yield, but it has a damped or
even perverse effect on long-term yields because these yields respond primarily to the
permanent component of expected inflation and the convexity of long bonds causes
their yields to fall with volatility. Thus excess bond returns are predicted by the
intermediate-term yield relative to the average of short- and long-term yields.
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5.3 The predictability of bond returns

Despite this promising qualitative pattern, bond returns have very limited predictabil-
ity in our model. Table 3 illustrates this point. In the first three rows we report
the standard deviations of true expected 3-month excess returns within the model.
The annualized standard deviation for the expected excess return on 3-year bonds is
10 basis points, and for the expected excess return on 10-year bonds it is 21 basis
points.18 This variation is an order of magnitude smaller than the annualized stan-
dard deviations of realized excess bond returns, implying that the true explanatory
power of 3-month predictive regressions is very small in our model. There is similar
variability of about 16 basis points in the true expected excess returns on TIPS.

The next three rows report the standard deviations of fitted values of Campbell-
Shiller (1991, CS) predictability regressions of annualized nominal bond excess returns
onto yield spreads of the same maturity at the beginning of the holding period. The
standard deviations in the data are 102 basis points for 3-year bonds, and 270 basis
points for 10-year bonds. These numbers are considerably larger than the true
variability of expected excess returns in our model, implying that our model cannot
match the behavior of these predictive regressions.

In artificial data generated by our model, predictive regressions deliver fitted values
that are considerably more volatile than the true expected excess returns. The reason
for this counterintuitive behavior is that there is important finite-sample bias in the
CS regression coeffi cients of the sort described by Stambaugh (1999). In the case
of regressions of excess bond returns on yield spreads, by contrast with the better
known case of regressions of excess stock returns on dividend yields, the Stambaugh
bias is negative (Bekaert, Hodrick, and Marshall 1997). In our model, where the
true regression coeffi cient is positive but close to zero, the Stambaugh bias increases
the standard deviation of fitted values by generating spurious negative coeffi cients.
Nonetheless, the standard deviation of fitted values in the model is still much smaller
than in the data, particularly for 10-year excess bond returns.

Another way to understand the diffi culty here is to decompose the time-variation
of the yield spread– the CS explanatory variable– into components due to transitory

18Yield interpolation for 3-month returns may exaggerate the evidence for predictability; however
the same yield interpolation is used for simulated data from our models. We have used our sim-
ulations to examine the effect of interpolation. We find that interpolation does slightly increase
measured bond return predictability, but the effect is modest.
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expected inflation, the real interest rate, and the state variable ψt and its square.
Figure 10 plots the actual and fitted yield spread in the left panel, and the com-
ponents explained by each state variable in the right panel. Transitory shocks to
expected inflation contribute most of the high-frequency variation, while the real in-
terest rate contributes some lower-frequency variation, in particular explaining why
the yield spread has been higher on average in the later part of the sample. The state
variable ψt and its square have only very small effects on the spread. Even though ψt
determines the risk premium, the variation in the risk premium is neither large nor
persistent enough to be a dominant influence on the yield spread in our model. This
also explains why the history of the expected excess bond return shown in Figure 8
does not resemble the history of the yield spread shown in Figure 10.

We obtain more promising results using a procedure that approximates the ap-
proach of Cochrane and Piazzesi (2005, CP). We regress excess bond returns on 1-,
3-, and 5-year forward rates at the beginning of the holding period, which allows the
regression to predict bond returns from the overall shape, and specifically the con-
cavity, of the yield curve rather than just its slope.19 Figure 11 reports the average
coeffi cients estimated in our model in the left hand panel, and the coeffi cients esti-
mated in the data in the right hand panel. The two sets of coeffi cients both have the
“tent”shape found by CP. Table 3 reports the standard deviations of fitted values,
and shows that for CP regressions these standard deviations are comparable in the
model and in the data, at least for predicting excess 3-year bond returns. Once
again, however, this finding is largely driven by small-sample bias as the fitted values
in the model have a much higher standard deviation than the true expected excess
returns. Figure 12 presents a decomposition of the 3-year forward rate relative to the
average of the 1-year rate and 5-year forward rate, comparable to Figure 10 for the
yield spread. The figure shows that the temporary component of expected inflation
is the most important driver of this CP “tent”variable, even though the real interest
rate xt, and ψt and its square, also have an influence.

Our results can be related to recent suggestions that unspanned factors may be
important in bond pricing (Duffee 2011, Joslin, Priebsch, and Singleton 2014). An
unspanned factor predicts both expected future interest rates and risk premia in such
a way that it does not influence current bond yields. While our term structure model
is not set up to include an unspanned factor, we do find that ψt has only subtle effects

19Cochrane and Piazzesi use five forward rates rather than three, and an annual rather than a
quarterly holding period. They also impose proportionality restrictions across the regressions at
different maturities, which we do not.
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on the shape of the term structure, which is primarily driven by other factors in our
model. Thus, the model implies that it will be hard to extract risk premia reliably
from the shape of the yield curve; direct estimation of ψt from other macroeconomic
data may help one to understand the behavior of bond risk premia.

We have explored an extension of our model that allows for time-variation in the
aggregate price of risk, identifying this time-variation explicitly with the yield spread
as in Wachter (2006) and others. This extension allows the model to explain more of
the observed variation in bond risk premia, perhaps unsurprisingly given prior results
in the literature. However, the low-frequency variation in the bond risk premium
generated by changing bond risk remains present in that more complicated framework.

6 Conclusion

We have argued that term structure models must confront the fact that the covari-
ances between nominal and real bond returns, on the one hand, and stock returns,
on the other, have varied substantially over time and have changed sign. Analyses of
asset allocation traditionally assume that broad asset classes have a stable structure
of risk over time; our empirical results imply that for bonds at least, this assumption
is seriously misleading.

We have added a changing covariance, which can change sign, to an otherwise
standard term structure model with a constant price of risk and identifiable macro-
economic state variables. In our model real and nominal bond returns are driven by
four state variables: the real interest rate, transitory and permanent components of
expected inflation, and a state variable that governs the covariances of inflation and
the real interest rate with the stochastic discount factor. The model implies that
the risk premia of nominal bonds should have changed over the decades because of
changes in the covariance between inflation and the real economy. The model pre-
dicts positive nominal bond risk premia in the 1980’s, when bonds covaried strongly
with stocks, and negative risk premia in the 21st Century and particularly during the
downturns of 2001 and 2007—09, when bonds hedged equity risk. The model-implied
decline in the risk premium on a 10-year zero-coupon bond is about 2% from peak to
trough.
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Our model is consistent with the qualitative finding of Cochrane and Piazzesi
(2005) that a tent-shaped linear combination of forward rates, with a peak at about 3
years, predicts excess bond returns at all maturities. Since the model has a constant
price of bond risk and explains risk premia only from time-variation in the quantity of
bond risk, it does not replicate the high explanatory power of regressions that predict
excess US Treasury bond returns from yield spreads and forward rates. However,
the results do suggest that time-varying bond risk is important in understanding
lower-frequency movements in bond risk premia.

Our results pose a new challenge to the asset pricing literature. A successful
asset pricing model should jointly explain the time-variation in bond and stock risk
premia along with the time-variation in the comovements of bond and stock returns.
Our model is a first attempt to do this, but it does not reconcile the changing second
moments of bond and stock returns with high-frequency variation in bond risk premia
captured by the shape of the yield curve. We hope that future term structure research
will address the challenge by extending the model presented here.

There are a number of ways in which this can be done. First and most obviously,
one can allow for changes in risk aversion, or the volatility of the stochastic dis-
count factor, following Duffee (2002), Dai and Singleton (2002), Bekaert, Engstrom,
and Grenadier (2005), Wachter (2006), Buraschi and Jiltsov (2007), and Bekaert,
Engstrom, and Xing (2009).

Second, one can model changing second moments in stock returns, possibly de-
riving those returns from primitive assumptions on the dividend process, as in the
recent literature on affi ne models of stock and bond pricing (Bekaert, Engstrom, and
Grenadier 2005, d’Addona and Kind 2006, Bekaert, Engstrom, and Xing 2009).

Third, one can allow both persistent and transitory variation in the nominal-real
covariance, as we have done for expected inflation. This might allow our model to
better fit both the secular trends and cyclical variation in the realized covariance
between bonds and stocks.

Fourth, one can consider other theoretically motivated proxies for the stochastic
discount factor. An obvious possibility is to look at realized or expected future con-
sumption growth, as in recent papers on consumption-based bond pricing by Piazzesi
and Schneider (2006), Eraker (2008), Hasseltoft (2009), Lettau and Wachter (2011),
and Bansal and Shaliastovich (2013). A disadvantage of this approach is that con-
sumption is not measured at high frequency, so one cannot use high-frequency data
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to track a changing covariance between bond returns and consumption growth. Al-
ternatively, it may be fruitful to incorporate other variables that may influence the
stochastic discount factor such as the supply of Treasury bonds (Greenwood and
Vayanos 2014, Krishnamurthy and Vissing-Jorgensen 2012).

It will also be interesting to estimate our model using data from other countries,
for example the UK, where inflation-indexed bonds have been actively traded since
the mid-1980’s. Evidence of bond return predictability is considerably weaker outside
the US (Bekaert, Hodrick, and Marshall 2001, Campbell 2003) and may better fit the
predictability generated by our model.

Finally, it is important to better understand the monetary and macroeconomic
determinants of the bond-stock covariance. Within a new Keynesian paradigm, one
possibility is that a positive covariance corresponds to an environment in which the
Phillips Curve is unstable, perhaps because supply shocks are hitting the economy or
the central bank is unable to anchor inflation expectations, while a negative covariance
reflects a stable Phillips Curve. Campbell, Pflueger, and Viceira (2015) combine a
small new Keynesian macroeconomic model with a consumption-based asset pricing
model to explore this interpretation. They allow the price of risk to change at high
frequencies, and find that changes in the price of risk amplify the effects of lower-
frequency changes in the quantity of bond risk driven by changes in monetary policy
and the variances of macroeconomic shocks.

The connection between the bond-stock covariance and the state of the macro-
economy should be of special interest to central banks. Many central banks use
the breakeven inflation rate, the yield spread between nominal and inflation-indexed
bonds, as an indicator of their credibility. The bond-stock covariance may be ap-
pealing as an additional source of macroeconomic information.
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Table 1: Parameter Estimates.

Description: Panel A of this table reports parameter estimates and standard errors for our model, estimated

using maximum likelihood and an unscented Kalman filter. The first block reports the means of the real rate xt

and the state variable ψt which governs the time variation in both the volatility of inflation and the real rate and

their covariance with the SDF, mt; the second block reports persistence parameters for these two state variables

and ξt, the transitory component of expected inflation; the third block reports the volatilities of shocks; the

fourth block reports the loadings of equities on shocks; and the fifth block reports the correlations between the

shocks. σπ is not estimated but normalized to 1. Panel B reports average conditional volatilities of shocks to

each state variable of interest in annualized percentage terms. We compute the average conditional volatilities

of the heteroskedastic shock to the real interest rate, the components of expected inflation, and realized inflation

as (µ2
ψ + σ2

ψ)1/2 times the volatility of the underlying shocks.

Panel A: Parameter Estimates

Parameter Estimate Std Err

µx x 103 11.756 0.859

µψ x 103 3.577 1.132

φx 0.972 0.002

φξ 0.885 0.007

φψ 0.858 0.028

σm x 102 7.109 2.526

σx x 101 1.996 0.169

σX x 104 8.015 1.157

σΛ x 104 6.805 0.402

σξ x 101 2.713 0.379

σπ 1.000

σψ x 103 3.793 1.088

βem x 101 0.836 0.044

βex x 102 0.164 5.616

βeX 0.734 0.001

ρxm -0.289 0.141

ρXm x 103 0.127 0.082

ρΛm x 104 -0.695 0.441

ρξm -0.193 0.074

ρξπ -0.163 0.612

ρπm x 102 -0.342 11.147

ρψm 0.691 0.158

Panel B: Conditional Volatilities

Parameter Std Dev(×400)

σX 0.321

(µ2
ψ + σ2

ψ)1/2σx 0.416

σΛ 0.272

(µ2
ψ + σ2

ψ)1/2σξ 0.566

(µ2
ψ + σ2

ψ)1/2σπ 2.085



Table 2: Sample and Implied Moments.

Description: This table reports sample and implied moments for yield spreads and excess returns. Yield

spreads (YS) are calculated over the 3 month yield. Realized excess returns (RXR) are calculated over a

3 month holding period, in excess of the 3 month yield. Units are annualized percentage points. The model

column reports means across 10,000 simulation replications. In each simulation, we use our estimated parameters

values to simulate paths of the model state variables for 250 quarters. We then compute the relevant statistic

in our simulated data. In the rightmost column, we report the fraction of simulation runs where the simulated

value exceeds the value observed in the data. Data moments for the 10 year return require 117 month yields.

We interpolate the 117 month yield linearly between the 5 year and the 10 year.† TIPS entries refer to the 10

year TIPS yield. We have this data 1999Q1-2014Q4.

Interpretation: The model somewhat underestimates mean yield spreads and excess returns, matches their

standard deviations, and generates an average TIPS yield that is much higher than the observed average,

implying that real interest rates were higher in the period before TIPS were issued.

Sample and Implied Moments

Moment Actual Data Model Above

3yr YS mean 0.62 0.45 0.27

10yr YS mean 1.27 0.63 0.17

3yr YS stdev 0.44 0.43 0.44

10yr YS stdev 0.70 0.86 0.81

3yr RXR mean 1.22 0.89 0.28

10yr RXR mean 2.73 1.36 0.17

3yr RXR stdev 4.21 4.71 0.81

10yr RXR stdev 11.11 10.87 0.38

10yr TIPS yield mean 1.89† 4.62 1.00

10yr TIPS YS mean -0.10

10yr TIPS RXR mean 0.10

10yr TIPS RXR stdev 8.65



Table 3: Predictive Regressions.

Description: This table reports sample and implied moments for bond return predictability. Realized excess

returns (RXR) are calculated over a 3 month holding period, in excess of the 3 month yield. Expected excess

returns (EXR) are model-implied expected excess returns over a 3 month holding period, in excess of the 3

month yield. Units are annualized percentage points. The model column reports means across 10,000 simulation

replications. In each simulation, we use our estimated parameters values to simulate paths of the model state

variables for 250 quarters. We then compute the relevant statistic in our simulated data. In the rightmost

column, we report the fraction of simulation runs where the simulated value exceeds the value observed in

the data. The σ(ĈP ) row reports the standard deviation of the fitted values from a Cochrane-Piazzesi style

regression of RXR on the estimated time-series of single CP tent factor. This tent factor is derived by regressing

the average of the 2-,3-,4-, and 5- year RXRs on the 1-, 3-, and 5- year forward rates. The σ(ĈS) row reports the

standard deviation of the fitted values from a Campbell-Shiller style regression of RXR on the same-maturity

yield spread (YS) at the beginning of the holding period. Data moments for the 10 year return require 117

month yields. We interpolate the 117 month yield linearly between the 5 year and the 10 year.† TIPS entries

refer to the 10 year TIPS yield. We have this data 1999Q1-2014Q4.

Interpretation: Changes in the quantity of bond risk explain some but not all the variation in expected bond

excess returns, suggesting that other factors such as a time-varying price of risk are needed to fully explain time

variation in bond risk premia.

Predictive Regressions

Moment Actual Data Model Above

3yr EXR stdev 0.10

10yr EXR stdev 0.21

10yr TIPS EXR stdev 0.16

3yr RXR σ(ĈS) 1.02 0.29 0.01

10yr RXR σ(ĈS) 2.70† 0.63 0.00

10yr TIPS RXR σ(ĈS) 0.57

3yr RXR σ(ĈP ) 0.71 0.63 0.35

10yr RXR σ(ĈP ) 1.74† 1.29 0.23
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Figure 1: Time series of the stock-bond covariance and the CAPM beta of the 10-year nominal

bond.

Description: The covariance and beta are estimated from a rolling window of 3 months of daily data.

Interpretation: The covariance and beta vary strongly and change sign over time. From 1950 to 1980, the

average beta was about zero; from 1980 to 2000, it was about 0.4; and from 2000 to 2015, it was about -0.2.
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Figure 2: Time series of the covariance of stock returns with shocks to deflation (-1 times inflation)

and the CAPM beta of deflation shocks.

Description: A first-order quarterly vector autoregression is estimated for inflation, stock returns, and the

three-month Treasury bill yield to calculate inflation shocks. The stock return covariance and CAPM beta of

deflation shocks (-1 times inflation shocks) are estimated from a rolling window of 20 quarters.

Interpretation: These time series are similar to the stock-bond covariance and CAPM bond beta, suggesting

that the behavior of inflation plays an important role in driving the changing stock-bond covariance.
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Figure 3: Time series of US 10-year inflation-indexed yields.

Interpretation: Inflation-indexed yields have fallen dramatically since 2000.
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Figure 4: Time series of second moments.

Description: The figure on the top left shows the fitted value from a regression of the realized covariance

between stock and 10-year nominal bond returns on lagged values of itself, the nominal short rate, and the yield

spread. The figure on the top right shows the fitted value from a regression of the realized variance of nominal

bond returns on lagged values of itself, the nominal short rate, and the yield spread. The bottom two figures

are repetitions of the top two figures using real bond returns. The smoothed line in each figure is a 2-year

equal-weighted moving average.

Interpretation: There is strong time-variation at both high and low frequencies in all of the second moments.

Bond volatility increased in 1970, in the early 1980s, and during the 2008-2009 financial crisis.
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Figure 5: Estimated time series of state variables.

Description: The figure on the top left plots the estimated time series of xt, the real interest rate. The figure

on the top right plots the estimated time series of λt, the permanent component of expected inflation. The

figure on the bottom left plots the estimated time series of ξt, the temporary component of expected inflation.

Finally, the figure on the bottom right plots the estimated time series of ψt, which governs the time variation

in both the volatility of inflation and the real rate and their covariance with the SDF.

Interpretation: Both the real rate and the permanent component of expected inflation peaked in the early

1980s and declined throughout the 1990s and 2000s. The temporary component of inflation varies with the

business cycle, while ψt tracks the stock-bond covariance.
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Figure 6: Predicted nominal bond variance and predicted stock-nominal bond covariance and

their decompositions into contributions from state variables.

Description: This figure shows a model-based decomposition of the variance of nominal bond returns and the

stock-nominal bond covariance.

Interpretation: The left two figures show that the model fits these second moments well. The right two figures

show that the model fits the variance of nominal bond returns primarily through time variation in ψ2
t , and it

fits the stock-nominal bond covariance primarily through time variation in ψt.
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Figure 7: Responses of nominal expected excess returns to ψt.

Description: The left hand figure shows the expected excess returns on 3-year and 10-year nominal bonds over

3-month Treasury bills, as functions of ψt. The right hand figure shows the term structure of expected excess

nominal bond returns as ψt is varied between its sample minimum and maximum while all other state variables

are held fixed at their sample means.

Interpretation: For a fixed maturity bond, expected excess returns increase approximately linearly in ψt. The

effect of ψt on expected excess returns is larger for longer maturity bonds.
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Figure 8: Estimated time series of model-implied expected excess returns for 10-year nominal

bonds in annualized percentage points.

Description: The excess return is over 3-month Treasury bill rate. The Sharpe ratio is computed as the

conditional expected excess return over conditional standard deviation.

Interpretation: The expected excess return peaks at 1.2% in 1980 and falls to a minimum of -0.8% in 2008.
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Figure 9: Responses of yield curves to ψt.

Description: The left hand figure shows the response of the real yield curve, and the right hand figure shows

the response of the nominal yield curve to ψt as it is varied between its sample minimum and maximum while

all other state variables are held fixed at their sample means.

Interpretation: ψt increases the concavity of both the real and nominal yield curves.
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Figure 10: Predicted nominal yield spreads and their decomposition into contributions from state

variables.

Description: The top two figures use the yield spread between the 10-year nominal Treasury bond and the

3-month Treasury bill, and the bottom two figures use the yield spread between the 3-year nominal Treasury

bond and the 3-month Treasury bill. The figures present a model-based decomposition of these yield spreads.

Interpretation: The left two figures show that the model fits the spreads well. The right two figures show that

the model fits the spreads using time variation in the real rate xt and the temporary component of inflation ξt.

ψt plays a small role in determining both spreads.
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Figure 11: Coefficients from simulated and empirical Cochrane-Piazzesi regressions of quarterly

excess returns on forward rates.

Description: In the left figure, the reported coefficients are the averages of coefficients from repeated regressions

using 10,000 simulated data series. The left figure is based on regressing the quarterly excess return (over the

3-month yield) on a bond on the 1-year yield, 3-year forward rate, and 5-year forward rates. The reported R2

is the average R2 from the simulated regressions of excess returns on a 3-year bond on the single simulated CP

factor. In the right figure, the reported coefficients are coefficients from the Cochrane-Piazzesi regressions using

actual data. The right figure is based on regressing quarterly excess returns (over the 3-monthly yield) on a

bond on the 1-year yield, 3-year forward rate, and 5-year forward rates. The reported R2 is the R2 from the

actual regression of excess returns on a 3-year bond on the single CP factor.

Interpretation: The model replicates the basic tent shaped predictor that Cochrane and Piazzesi find in actual

data.
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Figure 12: Time series of quasi Cochrane-Piazzesi state variable.

Description: The quasi Cochrane-Piazzesi state variable is computed as the difference between the 3-year

forward rate and an average of the 1-year rate and the 5-year forward rate.

Interpretation: The model fits the high-frequency variation in the quasi Cochrane-Piazzesi state variable

primarily with the temporary component of expected inflation ξt. The real interest rate xt and the nominal-real

covariance ψt influence the lower-frequency movements of the quasi state variable.


