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ABSTRACT

Cumulative Prospect Theory (CPT) has been used as a possible
explanation of aggregate pricing anomalies like the equity
premium puzzle. This paper shows that, unlike in expected
utility models, a complete market is not sufficient to guar-
antee that the market portfolio is efficient and that the stan-
dard representative-agent analysis is valid. The separation or
mutual fund theorems hold only under very restrictive con-
ditions for CPT investors. Without them, aggregation breaks
down, and assets are not necessarily priced as if there were
one investor who behaved according to CPT. Under more
limited conditions, the market portfolio can be efficient in
a complete market with equally probable states. But in this
case, individual CPT investors behave in the aggregate like
a standard expected utility investor. Similarly, when faced
with elliptically distributed assets, the capital asset pricing
model (CAPM) holds for any combination of CPT investors and
expected utility maximizers.
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Beginning in the 1970s, expected utility theory came under increasing
question for failing to explain certain irregularities in behavior, and many
modifications to the axioms or suggestions for alternate theories were
proposed. Prospect Theory and, in particular, its successor, Cumulative
Prospect Theory (CPT), is a response that has attracted a good deal of
attention. As originally constructed by Kahneman and Tversky (1979)
and extended by Tversky and Kahneman (1992), the theories have two
complementary parts: S-shaped, loss-averse utility and a probability
weighting function. Together these two features attempt a concise
explanation of the major violations of expected utility theory and other
seemingly incongruous behaviors or financial anomalies.

CPT has been tested in the laboratory where it has met with mixed
results. For example, List (2004) says it only adequately explains the
behavior of inexperienced agents. Those with more market experience
“behave largely in accordance with neoclassical predictions.” More impor-
tantly for finance, the applied literature on CPT has also been “tested” with
attempts to explain pricing anomalies, such as the equity premium puzzle
(Benartzi and Thaler, 1995), the size and value premium puzzles (De
Giorgi et al., 2004), and the disposition effect (Barberis and Xiong, 2009).

My paper takes a much more fundamental approach. It asks the ques-
tions: What kinds of portfolios would investors who are loss averse or use
probability weighting assemble? How do these portfolios differ from those
held by risk-averse investors or those who use objective probabilities? Do
mutual fund theorems and their pricing implications continue to hold?
In particular, is the market portfolio an efficient portfolio in the sense
that a representative investor exists? And are assets then priced as if a
representative agent is a CPT investor.1

CPT’s non-concave utility can lead to extreme portfolio demands, and
probability weighting is a form of heterogeneous beliefs, which can lead
to different investors’ optimal portfolios being quite dissimilar. My paper
confirms that optimal portfolios for investors with S-shaped utility or who
use probability weighting can differ substantially from optimal risk-averse

1Some of these questions have been previously addressed. In particular, De Giorgi
et al. (2004) show some conditions under which a CAPM equilibrium does or does not
obtain when investors have CPT preferences. Barberis and Huang (2008) ask a similar
question with a somewhat conflicting answer. A CAPM equilibrium fails to obtain for
heterogeneous TK-preferences agents (defined below in (1)) with αi = βi , but does by
default for homogeneous agents.



Prep
rin

t

Cumulative Prospect Theory, Aggregation, and Pricing 3

portfolios. In particular, demands across investors differ enough that even
a complete market is insufficient to guarantee that the set of efficient
portfolios is convex, as is guaranteed for risk-averse investors who use
objective probabilities. This means that there may be no representative
agent who holds the average or market portfolio. Unfortunately, a repre-
sentative investor who optimally holds the market portfolio is, directly or
indirectly, the basis for virtually all equilibrium models of asset pricing in
Finance, and a representative agent is almost universally assumed when
CPT pricing papers have calibrated their models to explain asset prices
(e.g., Barberis and Huang, 2008).

This negative result is moderated to an extent because it is also shown
that a representative investor does exist in a market with equally probable
states (including markets with an atomless continuum of states). The
resulting equilibrium is logically, though not necessarily statistically, equiv-
alent to some classical equilibrium (one with only risk-averse investors
utilizing objective probabilities). Unfortunately, this finding limits the
types of anomalies that can be explained by CPT. When we can aggregate
CPT investors into a representative agent, that representative agent is risk
averse and uses the true probabilities.2 In this sense CPT does not survive
aggregation.

One might wonder how CPT performs in an incomplete market with
limited trading opportunities. However, the context in which the CPT has
been used to explain anomalies — the stock market — is unlikely to be
a good example since derivative financial assets are so easily created. In
any case, as aggregation is not an innocuous assumption under CPT, it is
crucial to show exactly how the assumed representative investor behaves.

General two-fund separation results based either on utility (Cass
and Stiglitz, 1970) or distributions (Ross, 1978) are quite limited under
CPT. However, a more promising result is that the CAPM still obtains
under portfolio weighting and, under mild conditions, for S-shaped and
most other reasonable utility functions as well. Once again, though, the
equilibrium is logically the same as for risk-averse investors who do not
use probability weighting. The only difference between a mean-variance
world in which investors are simply risk averse and one in which investors

2When investors use probability weighting, there may not be a unique representative
agent; however, one of the possible representative agents will be risk averse and use the
true probabilities.
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are CPT investors is in the size of the market price of risk. This is, of course,
not what earlier papers explaining anomalies with CPT have tested.

Section 1 provides a brief review of CPT and its two component
parts, the S-shaped utility function and probability weighting. Section 2
introduces the portfolio maximization problem under CPT. Sections 3
and 4 examine the separate effects of S-shaped utility and probability
weighting. Sections 5 and 6 scrutinize mutual fund theorems and mean
variance analysis under CPT. Section 7 concludes.

1 Cumulative Prospect Theory: A Review

Prospect Theory (Kahneman and Tversky, 1979) and its successor, Cumu-
lative Prospect Theory (Tversky and Kahneman, 1992), were introduced
to explain violations of expected utility theory. Both theories share two
components, an S-shaped rather than a concave utility function and a
weighting scheme that differs systematically from the true probabilities.

For the standard expected utility problem, utility is strictly increasing
and concave in wealth or consumption. Under CPT, utility is still strictly
increasing but is reframed to be defined over the deviation, z, from some
reference level; the function is normalized so that the utility of no change
is zero, v(0) = 0. Rather than being concave, utility is S-shaped, concave
above 0 and convex below 0. This means choices are risk averse concerning
gains and risk seeking with regard to losses. This type of utility will be
called S-utility for short. If utility is twice differentiable, except possibly
at 0, then v′(z) > 0 for all z, and z′′ · v(z) ≤ 0, z �= 0. Though choices are
risk seeking over losses, it is typically assumed that utility is loss averse.
There are a number of different formal definitions of loss aversion in the
literature.3 The following definitions are used here.

3Tversky and Kahneman (1992) and Wakker and Tversky (1993) use the strong loss
aversion definition, though others call this increasing symmetric bet aversion. Köbberling
and Wakker (2005) define their measure of loss aversion as λ ≡ v′(0−)/v′(0+), which is
related to strong loss aversion but is directly applicable only at 0. Bowman et al. (1999)
employ the strong definition but also consider the even more stringent condition v′(x) ≥
2v′(y), ∀x < 0,∀y ≥ 0. Neilson (2002) uses the definition v(x)/x ≥ v(y)/y∀x < 0 ∀y >
0. Note that all of the inequality definitions are properties of the utility function alone,
independent of the probability weighting, even though the verbal definitions are about the
preference relation as a whole, including the weighting function. A direct interpretation of
the weak loss aversion verbal statement would be −Ω−(1/2)v(−z) ≥ Ω+(1/2)v(z) where
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Definition. A utility function displays weak loss aversion if no symmetric
fair binomial bet is preferred to the status quo; i.e., v(z) + v(−z) ≤ 0,
∀z > 0. A utility function displays strong loss aversion if larger symmetric
fair binomial bets are never preferred to smaller ones; i.e., v(z2)+v(−z2) ≤
v(z1) + v(−z1) ≤ 0, ∀0 < z1 < z2. Either version of loss aversion is called
strict if the relevant comparison is a strict inequality.

The latter definition is clearly the stronger one since it includes the
former when z1 = 0. If the gain-loss utility function is differentiable
(except possibly at zero), strong loss aversion can be equivalently defined
as v′(−z) ≥ v′(z), ∀z > 0.4 For weak loss aversion, this marginal utility
relation need hold only at zero; i.e., v′(0−) ≥ v′(0+). Both types of loss
aversion are generalizations of risk aversion. For any standard utility of
wealth function u(W ), define the gain-loss utility function v(z) ≡ u(W0 +
z) − u(W0). Then if v is loss averse, [u(W0 + z) + u(W0 − z)]/2 ≤ u(W0),
and u must be concave at every point W0.

Tversky and Kahneman (1992, henceforth TK) proposed and estimated
a specific S-shaped, loss-averse utility function of the form5

v(z) =

�
zα z ≥ 0
−λ(−z)β z < 0

with 0< α, β ≤ 1 and λ≥ 1. (1)

Their estimated parameters are α = β = 0.88 and λ = 2.25. Abdellaoui
(2000) obtained the similar estimates α = 0.89 and β = 0.92. Other
estimates include α = 0.52 and α = 0.37 by Wu and Gonzalez (1996)

Ω± are the probability weighting functions for gains or losses. This verbal preference-
relation definition cannot be extended to symmetric fair bets with more than two outcomes
without complete knowledge of the weighting functions.

4The derivative definition of strong loss aversion together with v(0) = 0 implies the
levels definition by integration. The levels definition applied to x and x + ε implies the
marginal-utility definition provided v is differentiable. For weak loss aversion this relation
holds at zero because 0 ≥ v(ε)+v(−ε) = v(ε)−v(0)−[v(0)−v(−ε)]→ ε[v′(0+)−v′(0−)].

5Although the TK utility function permits distinct parameters, with α �= β , it
displays weak loss aversion only if α = β as otherwise, the ratio −v(−z)/v(z) = λzβ−α
cannot exceed one for all positive z. This violation of loss aversion is often ignored as
inconsequential. For α < β , the largest symmetric bet that would be accepted has a size of
λ1/(α−β). This is less than 0.44 for the estimated TK parameter of λ = 2.25 regardless of α
and β . If these small gambles are excluded (or the utility function is suitably modified for
such gambles), then TK utility is strongly loss averse for all β ≥ α and λ ≥ 1 and strictly
so if at least one inequality is strict.
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using their own and Camerer and Ho’s (1994) data.6 These values of α
would seem to indicate only very mild aversion to risk because the relative
risk aversion for gains for this function is 1−α, and of course there is risk
seeking for losses. However, the parameter λ also strongly affects the aver-
sion to risk. For example, using TK’s parameter values, a fifty-fifty gamble
winning $1 or $2 has a certainty equivalent of $1.49 — one cent below
the expected value, but an even chance at winning or losing a dollar has
a certainty equivalent of −23¢. So while risk aversion over gains is mild,
there is much larger risk aversion when both gains and losses are involved.

Instead of using the outcomes’ probabilities directly, CPT uses decision
weights, ω, derived from a probability weighting function. Decision-
weighted “expected” utility is computed as

�ω[v(z̃)] =
∑
ωi(π, z)v(zi). (2)

Decision weights were originally introduced in Prospect Theory to capture
two behavioral effects: (i) the subjective overweighting of rare events
which seemed evident in behaviors such as the purchase of lottery tickets
and (ii) violations of the independence axiom accounting for the Allais
paradox.

As originally proposed, decisions weights could not readily be
extended to gambles with more than two non-zero outcomes as violations
of first-order stochastic dominance are introduced. Tversky and Kahneman
(1992) developed CPT to surmount this problem. They accomplished this
by applying weighting functions to the cumulative probability of losses and
complementary cumulative probability of gains.

Under CPT, outcomes are first ordered from lowest to highest

z−n < z−n+1 < · · ·< z−1 < z0 = 0< z1 < · · · zm. (3)

Then the cumulative probabilities for losses and the complementary
cumulative probabilities for gains are determined

Π−−i = π−n + · · ·+π−i Π+i = πi + · · ·+πm. (4)

Finally, weighting functions, Ω±, are applied separately to the cumulative
and complementary cumulative probabilities, and the decision weights are

6Ho (1994) and Wu and Gonzalez (1996) consider only gains so the parameters β
and λ were not estimated.
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determined by differencing

ω−i = Ω
−(Π−−i)−Ω−(Π−−i−1) ωi = Ω

+(Π+i )−Ω+(Π+i+1) for i > 0. (5)

For a continuous distribution with an objective cumulative distribution
Π(s), the decision-weight density functions are

ω−(s) = dΩ−(Π(s))
ds

=
dΩ−
dΠ

π(s) ω+(s) = −dΩ+(1−Π(s))
ds

=
dΩ+

dΠ
π(s)

(6)
where π(s) is the objective probability density function over the states.

Impossible and certain events must be mapped in the obvious fashion
so Ω±(0) = 0 and Ω±(1) = 1 for both weighting functions. In addition,
each weighting function must be strictly increasing. If they are not,
then a zero or negative decision weight can be assigned to a possible
outcome. Furthermore, it seems desirable to make the weighting functions
continuous so that a non-extreme event with a very small probability can
never be assigned a large decision weight. In particular, a discontinuous
weighting function can assign a decision weight atom to an atomless
probability distribution. Finally Ω must also be differentiable if a smooth
decision weight density function is to be achieved.

To explain the apparent overweighting of rare extreme events, the
cumulative weighting functions have an inverted-S shape. The specific
weighting functions proposed by Tversky and Kahneman are7

Ω±(Π) = Πδ±

[Πδ± + (1−Π)δ±]1/δ± , (7)

and they estimated the parameters to be δ− = 0.69, δ+ = 0.61. Other
estimates for δ+ reported in Camerer and Ho (1994) range from 0.28
to 0.97, with one exception.8 Prelec (1998) proposed the two-parameter

7The TK weighting function given in (7) is not monotonic for all parameter values;
therefore, it can assign negative decision weights. For example, for δ = 0.25, Ω(Π) is
decreasing over the range of cumulative probabilities 1.56% < Π < 23.62%. Negative
decision weights would be a severe problem for the interpretation of CPT leading to
inconsistencies such as the choice of first-order dominated payoffs. Fortunately, the TK
weighting function is monotonic for all values of δ greater than the root of the equation
(1 − δ)2−δ = δ1−2δ. The critical root is δ ≈ 0.279, so the function is monotone in the
empirically relevant range. See Ingersoll (2008).

8Sopher and Gigliotti (1993) reported δ = 1.87. For values of δ greater than 1, the
decision weights are smaller than the true probabilities for the rare extreme outcomes.
Only gains were considered so δ− was not estimated.
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Figure 1: Tversky–Kahnemann probability-weighting function.

Description: This figure illustrates the inverted S-shaped probability-weighting function
proposed by Tversky and Kahnemann, Ω(Π) = Πδ/[Πδ + (1 −Π)δ]1/δ for the parameter
δ = 0.65.

Interpretation: The function over-weights the cumulative (complementary cumulative)
probability where the curve is above (below) the 45-debree line. It over-weights the
marginal probabilities in both tails where the marginal curve is greater than 1.

weighting function Ω±(Π) = exp[−β±(−�nΠ)α] based on an axiomatic
derivation.

The TK weighting function is illustrated in Figure 1. For continuous
distributions, the decision weight density for an objective probability
density function of π(s) is

ω(s) = Ω′(Π)π(s) = δΩ(Π)
Π

�
1− 1− [(1−Π)/Π]δ−1

δ(1+ [(1−Π)/Π]δ)
�
π(s). (8)

For TK’s parameters, δ− = 0.69 and δ+ = 0.61, the cumulative
probability of losses is over-weighted for probabilities less than 37.8%
and the density is underweighted between the 12.4 and 82.2 percentiles;
the gain complementary probability is over-weighted for probabilities less
than 33.9% and the density is underweighted between the 10.9 and 82.8
complementary percentiles.

Note that the decision weight,ω0, for an outcome of zero is unassigned
by Equation (5). For CPT, the decision weight applied to a gain of zero
might appear to be irrelevant because v(0) = 0 so ω0 does not affect the
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computed “expected” utility. While this is true when CPT is used just to
model choices, for equilibrium pricing results, it is the expectation of and
covariance with marginal utility that matters so the numerical value ofω0
is important in an equilibrium CPT model and needs to be assigned. Either
Ω− or Ω+ could be extended to include a zero outcome; however, the two
extensions do not in general give the same value for ω0.

Another obvious completion is to set ω0 = 1 − Ω−(Π−1) − Ω+(Π1),
which makes the total of all the probability weights equal to one. Unfor-
tunately, this will not always be practical. First there may be no outcome
of zero to which to assign this weight. Second, this particular assignment
will be negative in some cases unless subcertainty applies; i.e., Ω−(Π) +
Ω+(1−Π) ≤ 1 ∀Π.9

Even when the residual assignment for ω0 is positive, it may differ
markedly from the probability weights for similar outcomes, and pricing
problems can arise. For example, TK’s estimated decision weight functions
with δ− = 0.69 and δ+ = 0.61 assign weights that total no more
than 89% for all prospects whose zero outcomes occur at cumulative
probabilities in the range 40% to 60%. Therefore, the no-change outcome
must be assigned a probability weight of at least 11%. In many models
with numerous outcomes, this could be an excessively large probability to
assign to a single one. And if the underlying distribution is continuous,
then an atom of decision weight at z0 = 0 is required.

To avoid these problems and ensure that all probability weights are
uniquely defined and positive, this paper makes the assumption that both
the gain and loss weighting functions assign the same weight to the zero-
gain outcome for all possible lotteries. This is equivalent to assuming a
single weighting function for the cumulative distribution, ignoring the
distinction between gains and losses.

Proposition 1 (Unique Zero-Gain Decision Weight Assignment).
The probability weighting functions, Ω±, both assign the same weight

9For example, using TK’s weighting function in (7) with δ− = 0.9 and δ+ = 0.6,
a gamble with a 10% chance of a losses and an 85% chance of a gains has total
probability weights of 18.80% and 82.25% for the losses and gains, which would require
ω0 = −1.05%. Subcertainty was assumed in the original version of Prospect Theory
(Kahneman and Tversky, 1979) to eliminate preferences for some stochastically dominated
gambles. This problem cannot arise in CPT where losses are assigned negative utility and
weighting is applied to cumulative probabilities; nevertheless, it is generally assumed that
subcertainty holds.



Prep
rin

t

10 Ingersoll

to the zero-change outcome for all gambles if and only if they satisfy
Ω−(Π) +Ω+(1−Π) = 1∀Π. This restriction is equivalent to using the single
weighting function Ω(Π)≡ Ω−(Π) on the entire cumulative distribution.10

Proof. Denote byΠ−1,Π1, and π0, the cumulative probability of the small-
est loss, the complementary cumulative probability of the smallest gain,
and the probability of a gain of zero. The weight applied to the zero gain
from extending the loss and gain weighting functions are ω−0 = Ω−(Π−1+
π0)−Ω−(Π−1) and ω+0 = Ω

+(Π1 +π0)−Ω+(Π1). If ω−0 =ω+0 , then

Ω−(1−Π1) +Ω
+(Π1) = Ω

+(1−Π−1) +Ω
−(Π−1). (9)

Because (9) applies to all risky prospects, Π1 and Π−1 are arbitrary, and
Ω+(1 −Π) + Ω−(Π) must be a constant for all Π. Furthermore, as Ω±(0)
= 0 and Ω±(1) = 1, this constant sum must be one. The converse is also
obviously true.

Identify Ω(Π) ≡ Ω−(Π) as the single weighting function for the
cumulative probabilities. This obviously assigns the same probability
weights as Ω− to all losses. Under the stated condition, it assigns the
weightωs = Ω

−(Πs)−Ω−(Πs−1) = 1−Ω+(1−Πs)−1+Ω+(1−Πs−1) to any
gain which is the same weight that Ω+ assigns using the complementary
cumulative probabilities.

Throughout this paper, the maintained assumption is that all decisions
are based on single, continuous, strictly increasing weighting functions,
satisfying Ω(0) = 0 and Ω(1) = 1. From Figure 1, the effects of using
one or two weighting functions are qualitatively similar in both tails so
using a single weighting function will only alter the numerical results.
This eliminates the difficulties discussed above and should not affect the
qualitative properties of probability weighting.

A related advantage of using a single weighting function is that the
resulting decision-weight distribution can be treated just like a subjective
probability distribution. Standard methods and intuitions like stochastic
dominance and Rothschild and Stiglitz (1970) riskiness can be applied
directly to the decision weights. The one caveat is that these subjective

10Quiggin (1982), who first proposed the use of a cumulative weighting function,
applied a single function to the entire distribution, though he imposed the additional
condition that Ω(1/2) = 1/2. Analysis using a single weighting function is usually termed
rank-dependent utility. De Giorgi et al. (2004) also use a single weighting function.
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distributions belong to the risky prospects and not to any state space
in which they are embedded. Two prospects with different orderings for
their outcomes can have different subjective distributions even if they are
defined on the same state space with given objective probabilities.

2 The Cumulative Prospect Theory Portfolio Problem

CPT was developed in the context of fixed gambles; that is, it was used
to evaluate predetermined sets of outcome-probability pairs. However, to
analyze portfolio problems, risky prospects whose outcomes are under
some control of the decision maker must be compared. This leads to
two distinct problems. First, in the standard portfolio problem unlimited
buying and selling is allowed, and a convex valuation over losses may
induce the investor to take unbounded positions. Second, the portfolio is
chosen from amongst a set of assets with a known joint probability distri-
bution, but the decision weights used in place of the probabilities cannot
be determined until the ordering of the resulting portfolio outcomes across
states is known. So as an investor evaluates different portfolios whose
returns are not perfectly aligned, a changing set of decision weights may
need to be employed in place of fixed state probabilities.

We will work in a standard single-period market setup. State s occurs
with probability πs and has a strictly positive state price of qs.

11 Final
wealth in state s is Ws = I0(1+ x̂+xs)where I0 is the total amount invested,
x̂ is the reference rate of return assigned zero utility, and xs is the return
in excess of x̂ , henceforth called the subjective rate of return.12 Positive

11The assumption qs > 0 assures there are no arbitrage opportunities. Although
state prices can also be represented by risk-neutral probabilities, these “probabilities”
cannot be subject to weighting because they are constrained by prices and possibilities
not likelihoods. In particular, in a complete market, the risk-neutral probabilities are
proportional to the state prices and are uniquely determined by the absence of arbitrage.
Even in an incomplete market, the absence of arbitrage limits the feasible risk-neutral
probabilities. These restrictions are identical across investors regardless of how they might
weight probabilities.

12There is no loss of generality in defining utility in terms of subjective rates of return
rather than dollar gains and losses in a single-period model. The reference level for dollar
gains is X̂ = I0(1+ x̂), and the dollar gain in excess of the reference level is Xs = I0(1+ x̂ +
xs)− X̂ = I0 xs. It is only in a multi-period setting, in which wealth can change, that using
rates of return rather than dollar gains and losses makes a difference due to reframing;
see Ingersoll and Jin (2013).



Prep
rin

t

12 Ingersoll

subjective returns will be called gains, although this differs slightly from
the objective meaning of the word that x̂ + x > 0. Negative subjective
returns will be termed losses. Most commonly the reference level rate of
return is set to either 0 or the interest rate, but any other value could be
used.13 The budget constraint is

∑
qs(1+ x̂ + xs)I0 = I0 or,∑

qs xs = 1− (1+ x̂)
∑

qs = (r f − x̂)/(1+ r f ) ≡ B (10)

where B has the same sign as r f − x̂ , typically positive.
In performing the portfolio optimization, the decision weights,ωs, are

used in place of objective probabilities. The weights are affected by the
ordering of the portfolio returns across states, but for a fixed ordering of
returns, they are constant and can be used just like the state probabilities in
the standard problem. Consider a particular ordering of portfolio outcomes
across states, and with no loss of generality label the states so that xs ≤
xs+1.14 The best portfolio with this specific ordering is the solution to

Max
∑
ωs v(xs) subject to

∑
qs xs = B and xs ≤ xs+1. (11)

This proposed solution, however, guarantees only an order-constrained
optimum. A different ordering of returns across states might have higher
decision-weighted utility due to differences in the probability weights.
Therefore, to solve the problem completely, the optimal portfolio for every
ordering of returns must be determined, and their maximized decision-
weighted utilities,

∑
ωsv(x

∗
s ), compared.15 The optimal portfolio is the

order-specific optimal portfolio that gives the highest expected utility.
The portfolio problem with no constraints apart from the budget

and ordering constraints is a complete markets analysis. An incomplete-
market portfolio problem can be analyzed by using additional constraints

13If there is time-0 consumption, another natural choice is x̂ = C0(1+ g)/I0−1 where
g is a reference-level growth rate for consumption. The reference level can also be related
to expectations (e.g., Kőszegi and Rabin, 2006).

14Typically under CPT all outcomes are distinct so if any two outcomes are equal,
they should be merged into a combined state with a single probability weight. However,
because states s and s + 1 are adjacent in the cumulative probabilities, the decision
weight for the merged state will equal the sum of the two original decision weights;
i.e., ω{s,s+1} = ωs + ωs+1. So when xs = xs+1 = x , the contribution of these two states
to expected (decision-weighted) utility can be expressed as either ωs v(x) +ωs+1 v(x) or
ω{s,s+1}v(x). Consequently, the weak inequality, which is usual for optimization, may be
assumed.

15As a practical matter the constrained optimal portfolio need not be determined for
all orderings. The constraint(s) that are binding in any one of the optimization problems
will indicate which orderings to try. Propositions 4 and 5 restrict possible orderings.
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restricting the feasible set of portfolio returns; i.e., x = Xy where X is the
S ×N matrix of subjective returns on each of the N available assets in the
S states, and y is a budget-constrained vector of the allocation to each of
the N assets. Short sales restrictions or limited liability can be handled
similarly by imposing y≥ 0 or x ≥ −(1+ x̂)1, respectively.

The Lagrangian for (11) is 
 =
∑
ωs v(xs) + η[B − ∑qs xs)] +∑S−1

s=0 κs(xs+1 − xs). The first-order Kuhn-Tucker conditions are

0= ∂
 /∂ xs =ωs v
′(xs)−ηqs − κs + κs−1 s = 1, . . . ,S,

0≤ ∂
 /∂ κs = xs+1− xs 0= κs(xs+1− xs) s = 0, . . . ,S − 1,

0= ∂
 /∂ η = B −∑qs xs.

(12)

The first line is standard apart from the constraint multipliers, κs. The
second line imposes the ordering constraint.16 When a constraint is not
binding, the corresponding κ is zero, and that constraint does not affect
the first-order condition in the top line. The final line is the budget
constraint. Before proceeding with the analysis, two issues that do not
arise in the standard problem must be mentioned. First, because utility
is not concave, the maximization problem may not be well posed, and
the optimal portfolio may not be bounded. Second, loss-averse utility
functions typically have a kink at zero and are not differentiable there. This
obviously can affect the first-order condition. Non-differentiability will be
addressed in the next section. The boundedness of the optimal portfolio is
discussed next.

To ensure that the optimal portfolio is bounded, a maximum tolerable
loss is sometimes imposed. This worst allowed outcome is denoted by x0;
its value is fixed and not a choice variable unlike the other x ’s. For example,
it might represent a total loss of wealth; i.e., x0 = −(1+ x̂). Of course, a
maximum loss can be imposed as a practical consideration even when the
optimal solution would otherwise still be bounded below.17 The maximum

16The constraint associated with κ0 is that the smallest return, x1, is not less than an
exogenous lower bound x0 (possibly −∞). A restriction like this is required in some cases
to ensure an optimal bounded portfolio and is discussed in more detail below.

17Assuming a maximum tolerable loss for an S-utility function essentially assigns a
utility of −∞ to any loss greater than x0. This is similar to a Friedman and Savage
(1948) utility function, which has lower and upper concave portions surrounding a convex
portion. S-utility with a maximum tolerable loss specializes Friedman-Savage utility by
making the lower concave portion infinitely risk averse and identifying the upper inflection
point as the reference level. The maximum loss can also be made state dependent, and all
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loss is set at x0 = −∞ to cover situations when no explicit maximum
tolerable loss is to be imposed.

As a practical matter, there will always be some maximum tolerable
loss (e.g., all wealth or the entire wealth of the economy) even if the value
for x0 cannot be precisely pinned down. However, in some models, it may
be useful to avoid such an exogenous constraint. In such cases, bounded
optimal portfolios can be assured by imposing some additional structure
on the utility function. One assumption that ensures bounded portfolios is
extreme-risk avoidance.

Definition 1. A utility function displays extreme-risk avoidance (XRA) if

lim sup
x→∞

v(x)
v(−kx)

= 0 ∀k > 0. (13)

Because utility is strictly increasing, v(x)> 0 for all positive x; therefore,
it can display XRA only if v is unbounded for large losses. As portfolio
formation allows only linear trade-offs between outcomes, XRA ensures that
any “extreme” portfolio will be rejected as sub-optimal. In particular, a very
large gain in some state must be financed by proportionally large losses in
other states, but extreme-risk avoidance ensures that when the leverage is
sufficiently large, the utility losses will more than offset the utility gains. This
notion is made precise in Proposition 2.

Proposition 2 (Bounded Optimal Portfolios with Extreme-Risk Avoid-
ance). In a finite-state model, if an investor has extreme-risk avoidance and
a zero-utility reference return less than or equal to the interest rate, then the
optimal portfolio has bounded positions in every asset.

Proof. The budget constraint puts an upper bound on the best return in
terms of the worst return. By definition the smallest and largest subjective
returns occur in states 1 and S, and from the budget constraint B =∑S

s=1 qs xs ≥ x1
∑S−1

s=1 qs + qS xS so x1 ≤ Q(B − qS xS) where Q−1 ≡∑S−1
s=1 qs. Because utility is increasing and the portfolio outcomes are

our results continue to hold, but there is little gain from this generalization and a large
cost in complexity.
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weakly ordered, the expected utility of this portfolio is

�ω[v(x)] =
S∑

s=1

ωs v(xs) ≤ω1v(x1) + v(xS)
S∑

s=2

ωs

≤ ω1v (Q(B − qS xS)) + v(xS)
S∑

s=2

ωs. (14)

By the mean-value theorem, v(Q(B − qS xS)) = v(−QqS xS) +
QBv′(aQB−QqS xs) for some a ∈ [0,1]. If the utility function displays XRA,
it is unboundedly negative as its argument becomes very negative, but v′ is
increasing for negative outcomes so as xS grows large, |v(Q(B − qS xS))| ∼|v(−QqS xS)| � v(xS), and the right-hand side of (14) will be negative.

Thus for any investor with XRA, portfolios with sufficiently extreme
returns must have negative expected utility. Such a portfolio cannot be
optimal if any portfolio with positive expected utility is possible, and that
must be true if the zero-utility reference return is less than or equal to the
interest rate because the risk-free portfolio then has nonnegative utility.18

Therefore, all optimal portfolios must have bounded positions.

If XRA is severely violated and the limit in (13) is infinite, for example
under TK utility with α > β , then similar reasoning shows that some
unbounded portfolio is always optimal. On the other hand, if the limit
in (13) is positive and finite, then the boundedness of optimal portfolios is
indeterminate in general. To illustrate, consider a TK utility investor with
α= β and a reference return x̂ = 0 in a two-asset, two-state economy with
q1 = q2 ≡ q < 1/2 and ω1 >ω2. For all feasible portfolios x2 = B/q − x1,
and expected utility for any portfolio with x1 positive is19

�ω[v(x)] =
�
ω1 xα1 −ω2λ(x1 − B/q)α x1 ≥ B/q
ω1 xα1 +ω2(B/q − x1)α 0< x1 < B/q.

(15)

18Even if the reference rate of return exceeds the risk-free rate, a negative expected
utility portfolio cannot be optimal if the investor receives zero utility from not entering the
market at all.

19Because the state prices are equal, the return in the more likely state must exceed that
in the less likely state; furthermore, at least one return must be positive so only portfolios
with x1 > 0 can be optimal. If ω2 < ω1 < λω2, the optimal portfolio holds x1 = [1 +
(ω1/ω2)1/(α−1)]−1B/q < B/q.
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This can be increased without limit if ω1 > λω2 so the optimal portfolio
is unbounded. On the other hand, if ω1 < λω2, the optimal portfolio will
have both x1 and x2 positive and finite.

XRA is a different property from loss aversion though they are related.
Loss aversion is neither necessary nor sufficient for XRA. The TK utility
function in (1) has extreme-risk avoidance only if α < β . As shown
previously in footnote 5, it displays loss aversion only for α = β . And as
shown in the previous example, even strong loss aversion is insufficient
to guarantee bounded optimal portfolios.

XRA is more closely related to He and Zhou’s (2011) Large Loss
Aversion Degree, defined as LLAD ≡ limx→∞[−v(−x)/v(x)]. An investor
displaying XRA will have LLAD = ∞. An infinite LLAD is required to
ensure that an investor will have a finite demand for borrowing to lever
a single risky asset or portfolio. XRA is a stronger condition ensuring that
both unlimited leverage and infinite short positions in all risky assets are
suboptimal.

In the remainder of the paper, every investor’s optimal portfolio is
assumed to have bounded outcomes due either to explicit bounds or
XRA. The problem of characterizing optimal portfolios and answering
the related question of how prices are set in a CPT equilibrium can
now be addressed. The next section examines optimal portfolios when
investors have S-shaped utility but use objective probabilities. Section 4
then addresses the effects of probability weighting.

3 The S-Utility Portfolio Problem

To focus on S-utility in this section, probability weighting is ignored and
the objective probabilities are used. By standard reasoning, the absence of
arbitrage guarantees that the realized rates of return rs on any asset are
related by 1 =
∑

qs(1+ rs) =
∑
πsθs(1+ rs) where θs ≡ qs/πs is the state

price per unit probability or stochastic discount factor when considered a
random variable. The marginal utility of any strictly risk-averse investor
can be used for θ , but under what conditions can marginal S-utility be
used? And can an S-utility investor serve as the representative investor so
that θ is the marginal utility provided by the market portfolio?

When solving the portfolio problem without probability weighting,
the outcome ordering constraints are ignored and all those Lagrange
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multipliers are zero. For all states except possibly those with the maximum
tolerable loss or a gain of zero, the first-order conditions in (12) hold as
equalities and20

v′(xs) = ηqs/πs for xs �= x0 and xs �= 0
v′(xs)≤ ηqs/πs for xs = x0
v′(0+) ≡ limx↓0 v′(x)≤ ηqs/πs

≤ v′(0−) ≡ limx↑0 v′(x) for xs = 0.

(16)

The first line is the standard first-order equality condition, which is the
same as that for a risk-averse investor. The second line applies to the
states in which the maximum tolerable loss is realized; it is the same
first-order condition but as an inequality because the investor might
prefer to decrease xs if unconstrained. If the utility function has a kink
at zero with v′(0+) < v′(0−), then the first-order condition for any state
with a realized gain of zero is a two-sided inequality. For some S-shaped
utility functions, including TK utility, marginal utility is unbounded near
zero so their optimal portfolios will have no realized returns of zero, and,
indeed, no returns that are close to zero (unless the ratio qs/πs is also
unbounded) so the third line of (16) will be immaterial.

From (16) many of the properties of optimal portfolios are determined
by the price-probability ratio, θs = qs/πs, just as under global risk aversion.
For states with an unconstrained return, x∗s = v′−1(ηθs). Because v′′(x)<
0 for risk-averse investors their optimal portfolios always have higher
returns in states with smaller θs, and it is natural when comparing states
to call the one with the lower price-probability ratio the better state.
However, for S-utility investors, the states in which subjective returns are
positive and negative must be examined separately. In addition, states
where the maximum loss or a gain of zero are earned and the first-order

20The first-order conditions must hold even in the convex region of losses provided the
loss is not maximal or zero. Consider any optimal portfolio and the same portfolio with
two returns altered to xi → xi + qjε and x j → x j − qiε. This alteration is affordable and
the change in expected utility for small ε is ∆�[v] = [πi v

′(xi)qj −π j v
′(x j)qi]ε + O(ε2).

If the first-order conditions do not hold, then the term in brackets is positive (negative).
An increase (decrease) in xi will then increase expected utility and the original portfolio
could not have been optimal. This does not depend on whether utility is locally concave
or convex just so long as neither xi nor x j is minimal or zero so either can be decreased as
necessary. The example below shows that optimums with non-maximum tolerable losses
do exist.
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condition does not hold as an equality must also be considered. Proposition
3 gives an initial characterization of efficient S-utility portfolios.

Proposition 3 (S-Utility Optimal Portfolios in a Complete Market). If the
market is complete, the rates of return realized on the portfolio optimal
for an S-utility investor with either XRA or a finite maximum tolerable loss
(x0 > −∞) are characterized by:

(i) Gains are larger in better states; i.e., for xi, x j > 0, xi > x j if and only
if θi < θ j .

(ii) If there is no maximum tolerable loss, then a loss is realized in at most
one state. If there is a maximum tolerable loss, then multiple states
can suffer this loss, but there is only one or zero state with a loss not
maximal in size.

(iii) Any state with a realized loss cannot have a smaller state price and the
same or higher probability than any other state with a gain or a smaller
absolute loss. However, portfolio outcomes need not be monotonic in θs.

Proof. All results follow immediately from the first-order conditions. The
separate characterizations are verified and discussed below.

Among states where gains are earned, the portfolio return will be
higher the lower the price-probability ratio, just as for a risk-averse
investor, because the first-order conditions hold and marginal utility is
decreasing over gains. This verifies property (i). In some settings an
S-utility investor’s optimal portfolio may have gains in all states. This
will occur, generically if the market does not provide sufficient reward for
bearing risk.21

To verify the second property, suppose there are two states with non-
maximum tolerable losses in the optimal portfolio. The same portfolio
with just these two returns altered to xi → xi − qjε and x j → x j + qiε

is affordable for any ε. A second-order Taylor expansion for the change in
expected utility for this alteration is

∆�[v(x)] = ε[π jqi v
′(x j)−πiq j v

′(xi)]

+
1
2
ε2[πi v

′′(xi)q
2
j +π j v

′′(x j)q
2
i ] + o(ε2). (17)

21For example, consider a two-state economy characterized byπ1 = π2 = 1/2, q1 = 0.6,
q2 = 0.2. An investor with the TK utility function with α = β = 1/2,λ = 2, and x̂ = 0
optimally holds the portfolio x1 = 1/12 and x2 = 3/4.



Prep
rin

t

Cumulative Prospect Theory, Aggregation, and Pricing 19

The first term is 0 by the first-order conditions. The second term is positive
because v′′ > 0 in each state by assumption. Therefore, expected utility
can be increased by this alteration, and the original allocation could not
have been optimal. That is, a loss that is less than maximal can be realized
in at most one state.22 Of course, if there is no maximum tolerable loss
(x0 = −∞), then it follows immediately that at most one state can have
a loss verifying property (ii).

The intuition for this result is that investors with S-utility will always
benefit by making a large loss worse in order to reduce a smaller loss if
this is possible. With an ordinary risk-averse utility function, this is never
beneficial as the increased loss has the bigger impact on utility. But in the
convex portion of an S-utility function, it is better to concentrate losses in
a single state because the marginal utility decreases rather than increases
as the loss size is increased. Only if there is a maximum tolerable loss can
an optimal portfolio realize losses in two or more states because the state
price of a single state may not be large enough to finance the gains desired
in all the other states.

To verify property (iii) consider two states with πi ≤ π j and qj < qi.
If some portfolio with x j = � ≤ 0 and xi = h > � is affordable, then
the portfolio with x ′j = h+ (qi − qj)(h − �)/qj > h, x ′i = �, and identical
returns in all other states is also affordable and has higher expected
utility because it first-order stochastically dominates the first portfolio.23

Therefore, the original portfolio with the loss in the better state could
not have been optimal. However, this property is not as strong as the
reverse ordering between θs and xs under risk aversion. For example,
in the economy π = (0.75,0.25)′, q = (0.8,0.2)′, the optimal portfolio
for the TK utility function with α = 0.4, β = 0.6, λ = 2, and x̂ = 0 is
x∗ = (0.0051,−0.0205)′. The price-probability ratios are θ = (1.07,0.8)′,
so the optimal portfolio has its higher return in the worse state.

This property might seem to be only a curiosity, but it is more than that.
When the returns on all optimal portfolios are not monotonically related,
the set of efficient portfolios for risk-averse and S-utility investors need not
be convex even in a complete market, as it always is among risk-averse

22Equation (17) cannot be applied if one of the states already has the maximum
tolerable loss. Only alterations that increase a maximum tolerable loss are possible and
the first-order condition may not hold as an equality.

23First-order stochastic dominance is a valid comparison for S-utility because the only
requirement for first-order stochastic dominance is increasing utility.
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investors. And when the efficient set is not convex, the market portfolio
need not be efficient.24

To illustrate that the market portfolio need not be efficient, con-
sider the three-state economy with π = (0.35,0.4,0.25)′ and q =
(0.375,0.425,0.2)′. A TK-utility investor with α = 0.4, β = 0.6, λ = 2.5,
and x̂ = 0 optimally holds the portfolio x′ = (0.0051,0.0052,−0.0206)
whose loss is not in the worst state. This does not violate property (iii)
because the third state has a smaller probability than the first. Combining
this portfolio with one whose returns are ordered inversely to θ can lead to
a market portfolio that is not efficient. For example, a TK-utility investor
with α = 0.8, β = 0.9, λ = 2, and x̂ = 0 optimally holds the portfolio
x′ = (−0.0037, 0.0011, 0.0045).25 If one-quarter of the investors are of
the first type and three-quarters are of the second type, then the aggregate
demand of the market is xmkt = (−0.0015, 0.0021, −0.0017). This cannot
be the optimal portfolio of any unconstrained S-utility investor because
two subjective returns are negative, which is prohibited by property (ii).
Nor can it be the optimal portfolio of any risk-averse investor because
the returns are not ordered inversely to θ . Therefore, this economy can
have no representative investor who is either of these types. Consequently
pricing results that rely on an assumed optimal market portfolio will be
invalid.26 The existence of a representative investor and efficiency of the
market portfolio are discussed in more detail in Section 5.

Figure 2 illustrates and Table 1 describes the optimal portfolios for
S-utility investors with a one-year investment horizon in an economy with
a lognormal market portfolio. The market portfolio is characterized by
r = 5%, µ = 13%, σ = 20% with state prices determined assuming a
representative investor with a constant relative risk aversion of 2. Investors
have TK utility with parameters λ = 2.25, α= β = 0.88 or 0.5, a reference
return of x̂ = 0, and maximum tolerable losses of x0 = −100% or −25%.
The optimal portfolios’ rates of return are plotted against the rates of

24See Dybvig and Ross (1982) and Ingersoll (1987) for examples of the nonconvexity
of the efficient set among risk-averse investors when the market is incomplete.

25This second portfolio has its returns ordered inversely to θ so it is the optimal
portfolio for some strictly risk-averse investors as well. Therefore, the inefficiency of the
market portfolio does not require heterogeneous CPT investors.

26It might be possible to have a CPT representative investor with a maximum tolerable
loss of x0 = −0.0017; however, the marginal utility of this investor also could not be used
to price all assets since the inequality first-order condition for the third state would not
determine its state price.
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Figure 2: Optimal S-utility portfolios.

Description: The optimal portfolios for investors with S-shaped Tversky-Kahneman utility
are plotted against the market portfolio’s return. The market has a lognormal distribution
with parameters r = 5%, µ = 13%, σ = 20%. The investor’s utility parameters are α =
β = 0.88 in the left panel and α = β = 0.5 in the right panel. In each case λ = 2.25
and the zero-utility reference return is x̂ = 0. The maximum tolerable loss is x0 = −100%
(dotted line) or x0 = −25% (dashed line).

return on the market. For an investor with TK’s estimated parameters,
α = β = 0.88, the optimal portfolio earns the maximum tolerable loss
for market returns up to −6.5% (−8.1%) for x0 of −100% (−25%). This
means the maximum tolerable loss is realized in 18.8% (16.6%) of the
years. The Sharpe ratio and Jensen’s alpha of the portfolio are also given
for purposes of comparison. They are not valid measures of performance
for CPT preferences.

The figure shows that the resulting portfolios are quite unusual. For a
−100% maximum loss, the portfolio has an average rate of return of 89.1%
compared to the market’s 13.8% but underperforms the market in 78% of
the years. Its average return is higher mostly because in the best years it
substantially outperforms the market. It also outperforms the market in
years with small losses for the market. The −25% maximum-loss portfolio
has a similar record. Its average return is 31.9%, and it requires even better
years to outperform the market though, of course, it also beats the market
whenever the market drops by more than 25%. What is not shown in the
figure is the extreme performance in very good years. The 99th percentiles
returns for these two CPT portfolios are 1681.4% and 563.8%, which occur
at 77.1% return for the market. These portfolios are clearly very risky
with market betas of 16.4 and 5.4, and standard deviations of 1252% and
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418%, respectively; however, these risk measures are strongly affected by
the extreme right tail and might not be seen in empirical data.27

The right panel shows the optimal portfolio for an investor with α =
β = 0.5, the parameter estimate of Wu and Gonzalez (1996). Though
still odd, these portfolios appear more realistic. For example, the betas
are now 1.23 and 0.35. Table 1 provides some further summary numbers.
One seeming paradox is the positive relation between the magnitude of the
maximum tolerable loss, x0, and the fraction of years it is earned. Because
a CPT investor is risk seeking over losses, a loss of−100% has less than four
times the disutility as a loss of 25%, but the state prices, which are deter-
mined by risk aversion, makes the former more than twice as valuable.

It is clear that S-utility can lead to optimal portfolios that are quite
different from those held by risk-averse investors. While the portfolios
illustrated in Figure 2 and Table 1 assumed complete markets, quite similar
portfolios can be constructed with simple put and call options. Optimal
CPT portfolios in markets with restrictions on the types of assets are
examined later, but first in the next section the second aspect of CPT —
probability weighting — is studied.

4 The Portfolio Problem under Cumulative Probability

Weighting

In this section, to concentrate on the effects of cumulative probability
weighting, some examples using risk-averse utility functions are con-
sidered first.28 For a strictly concave utility function, marginal utility is
monotonic and invertible so the optimal portfolio given in equation (12)
satisfies

x∗s = u′−1 ((ηqs + κs − κs−1)/ωs) . (18)

If x∗s is not equal to either of its neighbors, then κs = κs−1 = 0, and
the optimal return is the inverse marginal utility of some multiple of the
price-decision-weight ratio qs/ωs. The only difference between this and
the standard result is that the decision weight rather than the probability
is used in the ratio. If some consecutive states s′, s′+1, . . . , s′′ all have the

27For example, the 10% Winsorized betas are 5.79 and 1.82.
28For these problems there is no loss of generality in assuming the zero-utility reference

rate of return is x̂ = 0.
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same return in the optimal portfolio but different returns from those in the
other states, then κs′ through κs′′−1 can be positive. In this case,

x∗s′ = u′−1((ηps′ + κs′)/ωs′) ≤ u′−1(ηps′/ωs′)
x∗s′′ = u′−1 ((ηps′′ − κs′′−1)/ωs′′) ≥ u′−1(ηps′′/ωs′′).

(19)

The inequalities follow because the multipliers are nonnegative and
marginal utility is decreasing. The first-order conditions can therefore be
summarized as

x∗s = u′−1(ηps/ωs) for x∗s−1 < x∗s < x∗s+1
u′−1(ηps′′/ωs′′)≤ x∗ ≤ u′−1(ηps′/ωs′) for x∗s′ = x∗s′+1 = · · ·= x∗s′′ = x∗.

(20)
The conditions in the second line of (20) permit the optimal portfolio to
have tied outcomes across states provided the assumed weak ordering is
preserved.

This proposed solution, however, guarantees only an order-constrained
optimum. A different ordering of xs across states might have higher
decision-weighted utility. To solve the problem completely, the optimal
portfolio for each ordering must be determined from (12), and their max-
imized decision-weighted utilities,

∑
ωsu(x∗s ), can then be compared. The

optimal portfolio is the constrained portfolio that gives the highest utility.29

As noted previously, this solution is optimal only for this particular
order-constrained outcome. A complete solution requires checking other
possible outcome orderings. For example, consider the simple three-state
problem presented in Table 2. The interest rate is zero. States a, b, and c
have probabilities of 20%, 30% and 50% and state prices of 0.3, 0.3 and
0.4, respectively. State a is the most expensive state per unit probability,
and state c is the least expensive so the optimal portfolio for a risk-
averse expected utility maximizer has its returns ordered xa < xb < xc.

30

Suppose, instead, the investor has a TK probability weighting function as
given in (7) with a parameter δ = 0.7. If his portfolio returns are also
ordered xa ≤ xb ≤ xc, then the decision weights are 25.6%, 20.13% and

29As a practical matter the constrained optimal portfolio need not be determined for
all orderings. The constraint(s) that are binding in any one of the optimization problems
will indicate which orderings to try.

30See, for example, Chapter 8 of Ingersoll (1987) for a proof that all risk-averse
investors with state-independent utility hold portfolios whose returns are inversely ordered
to the price-probability ratio qs/πs in a complete market.
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54.26%. The optimal order-unconstrained portfolio, determined by (18),
is given in the columns labeled “Assumed order (a, b, c)” in the middle
panel of Table 2.

Unfortunately, these “optimal” returns are not ordered as assumed,
but rather xb < xa < xc, and the true decision-weighted utility for this
ordering is not 1.065, but only 1.037 as computed with the correct decision
weights based on the actual ordering of outcomes as shown in the columns
labeled “Corrected (b, a, c).” This occurs because under the first ordering,
the decision weights overemphasize state a and underemphasize state b
relative to the probabilities so the decision-weight ratio, qs/ωs, does not
align with probability ratio, qs/πs.

But the problem does not end with correcting the computation of the
decision-weighted utility. This “optimal” solution was determined using a
faulty assumption about the ordering of outcomes, but the result indicated
that the xa ≤ xb constraint was binding. This suggests that the ordering
xb < xa < xc be considered. The second panel of Table 2 shows the
calculated optimum under this second assumed ordering. Again the order-
unconstrained optimal portfolio does not match the assumed order —
rather it insists on the originally assumed order of xa < xb < xc. Further
exploration of all orderings shows that whenever, xa < xb, increasing
xa and decreasing xb increases decision-weighted utility and vice versa.
Consequently, the optimal portfolio under this probability weighting must
have xa = xb as shown in the final columns in Table 2. In addition we see
that the highest return in state c is larger under probability weighting than
under expected utility maximization.

While this example was obviously created, it was not chosen specifi-
cally to achieve unusual results; nor do the results depend on the small
number of states or on the existence of a complete market. The flattening
of the left tail and the skewing of the right tail is a generic trait of the
optimal portfolios for investors who employ probability weighting of the
type proposed in CPT.

Even when the conversion of probabilities to decision weights is
approximately symmetric in the two tails, the effects there are quite
different. The decision weights exceed the true probabilities for both
extremes as shown in Figure 1. Because the optimal portfolio’s return is
decreasing in the ratio qs/ωs, the portfolio of an investor using probability
weighting has higher returns than that of an expected utility maximizer
in both tails where ωs tends to be greater than πs; that is, the right tail is
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longer and the left tail is shorter, leading to a right skewing of the optimal
portfolio.31

In the right tail, this stretching is the only effect. In the left tail,
however, the increased return can also alter the outcome ordering, which
affects the probability weighting as shown in the example in Table 2. As
in the example, the left tail will often be completely flattened so that the
portfolio’s return is constant over a range of the low-return states. This
is particularly true for portfolios with many outcomes whose probabilities
are similar in magnitude.

Flattening need not occur only in the left tail as the example in Table 3
shows. In this example, the states are ordered a to d from high to low
by their ratios qs/πs. However, the decision weights flip the ordering of
the middle two states b and c for the ratio qs/ωs. This alteration would
require the optimal portfolio to hold xb > xc, but this switch in the order
also alters the decision weights and the ratio — changing them back to
the order under the true probabilities.32 Therefore, the decision-weighted
optimal portfolio will hold xa < xb = xc < xd , and the portfolio outcomes
have been flattened in the middle of the distribution not the left tail.

In the two examples in Tables 2 and 3, the portfolio outcomes are
monotone decreasing in the price-probability ratio, qs/πs; however, they
need not be strictly decreasing as they are for any strictly risk-averse
expected utility maximizer. It is also possible to construct examples in
which the optimal decision-weighted portfolio’s returns are not monotonic
in the ratio, qs/πs, even for a strictly risk-averse investor.

The inverted S-shaped probability weighting function, Ω, increases the
importance of both tails of the distribution; therefore, if the ordering of the

31It is possible to construct scenarios where the probability weight for either extreme
outcome is less than the associated probability, and, therefore, the probability-weighted
optimal portfolio has a smaller return than the expected-utility maximizing portfolio for the
extreme outcome. For example, this occurs in the lower tail for the TK weighting function
with δ = 0.65 if the worst state had a probability in excess of 35.87%. Because the best
and worst states are likely to be very rare in most applications, right skewing of both tails
of the optimal portfolio should be the typical result. The effect must always be present in
at least one of the tails if the cumulative weighting function has an inverted S-shape with
only a single crossing of the 45◦ line.

32Any probability weighting function satisfyingΩ(0.3) = 0.32,Ω(0.5) = 0.51,Ω(0.7) =
0.68, Ω(1) = 1 will create this example. These conditions are consistent with the inverted-
S shape as shown in Figure 1. Note that states b and c have the same probability so the
ordering of their outcomes alone determines which decision weight is assigned to which
state.



Prep
rin

t

28 Ingersoll

st
at

e
st

at
e

st
at

e
π

q
q/
π

or
de

r
Ω

ω
q/
ω

or
de

r
Ω
′

ω
′

q/
ω
′

a
30

%
0.

40
1.

33
a

32
%

32
%

1.
25

0
a

32
%

32
%

1.
25

0
b

20
%

0.
21

1.
05

b
51

%
19

%
1.

10
5

c
51

%
19

%
1.

00
0

c
20

%
0.

19
0.

95
c

68
%

17
%

1.
11

8
b

68
%

17
%

1.
23

5
d

30
%

0.
20

0.
67

d
10

0%
32

%
0.

62
5

d
10

0%
32

%
0.

62
5

Ta
bl

e
3:

O
pt

im
al

po
rt

fo
lio

w
it

h
pr

ob
ab

ili
ty

w
ei

gh
ti

ng
:i

llu
st

ra
ti

ng
m

id
ra

ng
e

fla
tt

en
in

g.

D
es

cr
ip

ti
on

:
Th

is
ta

bl
e

pr
es

en
ts

a
fo

ur
-s

ta
te

pr
ob

le
m

fo
r

an
in

ve
st

or
w

it
h

a
ri

sk
-a

ve
r

ut
ili

ty
fu

nc
ti

on
w

ho
us

es
an

in
ve

rt
ed

S-
sh

ap
ed

pr
ob

ab
ili

ty
w

ei
gh

ti
ng

fu
nc

ti
on

w
it

h
Ω
(0

.3
)
=

0.
32

,Ω
(0

.5
)
=

0.
51

,Ω
(0

.7
)=

0.
68

,Ω
(1
)=

1.

In
te

rp
re

ta
ti

on
:

T
he

m
id

dl
e

se
ct

io
n

of
th

e
ta

bl
e

de
m

on
st

ra
te

s
th

at
a

po
rt

fo
lio

w
ho

se
re

tu
rn

s
ar

e
or

de
re

d
in

ve
rs

el
y

to
th

e
lik

el
ih

oo
d

ra
ti

o,
q/
π

,w
ill

in
du

ce
a

pr
ob

ab
ili

ty
w

ei
gh

ti
ng

lik
el

ih
oo

d
ra

ti
o,

q/
ω

,w
hi

ch
re

ve
rs

es
th

e
or

de
r

of
th

e
m

id
dl

e
tw

o
st

at
es

,
b

an
d

c.
H

ow
ev

er
,

as
sh

ow
n

in
th

e
la

st
se

ct
io

n,
a

po
rt

fo
lio

w
ho

se
re

tu
rn

s
ar

e
or

de
re

d
in

ve
rs

el
y

to
th

e
lik

el
ih

oo
d

ra
ti

o,
q/
ω

,w
ill

in
du

ce
a

ne
w

de
ci

si
on

-w
ei

gh
te

d
lik

el
ih

oo
d

ra
ti

o,
q/
ω
′,w

hi
ch

ag
ai

n
sw

it
ch

es
th

e
or

de
r

of
th

e
m

id
dl

e
tw

o
st

at
es

.B
ec

au
se

bo
th

as
su

m
ed

or
de

ri
ng

s
le

ad
to

co
nt

ra
di

ct
io

ns
,

th
e

tr
ue

op
ti

m
al

po
rt

fo
lio

m
us

t
ha

ve
eq

ua
lo

ut
co

m
es

in
st

at
es

b
an

d
c.



Prep
rin

t

Cumulative Prospect Theory, Aggregation, and Pricing 29

portfolio’s returns moves one state’s return from the left to the right tail,
the decision weight could remain higher than the probability.

In the example illustrated in Table 4, state c has a lower ratio, qs/πs,
than state b. Therefore, any risk-averse expected utility maximizer would
hold a portfolio earning a higher return in state c than in state b. However,
state b is less likely than state c and is further into the left tail than
state c is into the right tail. The decision-weighting function, therefore,
emphasizes state b relative to state c, and the decision-weight maximizer
might wish to increases the return in state b to more than in state c. This
alters the ordering and affects the decision weights assigned. In this case,
however, state c has a large probability and state b is transferred just as
far into the right tail as it was in the left tail so its decision-weight ratio,
pb/ωb, remains high relative to pc/ωc . Therefore, the optimal decision-
weighted portfolio has its returns ordered xa < xc < xb < xd , which is
not monotonic in the price-probability ratio, qs/πs.

33 This will be true for
any risk-averse investor.

The examples in Tables 2–4 illustrate some of the complications of
finding an optimal decision-weighted portfolio even for concave utility.
In any practical problem the difficulty is multiplied immensely as every
possible ordering of the state returns might need to be examined. That is, if
there are n states, then n factorial standard portfolio problems would need
to be solved — one for each of the possible orderings. This exacerbates
the portfolio-outcome-ordering problem discussed in connection with the
third property of Proposition 3. If investors’ portfolios are not aligned, a
representative investor holding the market portfolio may not exist. The
next section covers this topic in more detail and shows that it can be
resolved in some important cases.

5 The Representative Investor under CPT

As noted in the previous two sections, investors who have S-utility or
who use decision weights in lieu of actual probabilities may optimally
hold portfolios whose outcomes are not aligned even when markets are
complete and investors have homogeneous beliefs. This can result in the
absence of a representative investor who holds the market portfolio and in

33The other permutations must also be checked to verify that this ordering leads to the
highest utility.
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the failure of the standard pricing results, which follow. This section shows
that the market portfolio will be optimal in at least one important case —
a complete market with equally probable states, including a market with
a continuum of states. Two preliminary results are proved first.

Proposition 4 (Portfolio-Outcome Ordering under Probability Weighting).
For any two states in a complete market that are equally probable, the
optimal portfolio of any investor with increasing utility who uses cumulative
probability weighting realizes at least as high a return in the state with the
smaller state price.

Proof. Consider two states, i and j, with πi = π j . With no loss of
generality take qi > qj. Now assume that the proposition is false and
x∗i = h > � = x∗j . The otherwise identical portfolio with xi = � and x j = h
is affordable because qi > qj. Swapping these two returns will change
the order of the outcomes across states. However, because πi = π j and
the weighting function depends on the cumulative probabilities, only the
decision weights for states i and j will be affected and they will simply be
swapped. Therefore, the decision-weighted expected utility for the altered
portfolio will be equal to that for the portfolio originally assumed to be
optimal. The altered portfolio costs less by (qi − qj)(h− �), and this extra
can be invested in the risk-free asset (or any other asset with nonnegative
payoffs that does not alter the order of the state outcomes) increasing
the return realized in every state. With this addition, the final portfolio
will have a higher decision-weighted expected utility than the original
portfolio, which, therefore, cannot have been optimal. Thus, x∗i ≤ x∗j .

With the additional assumption that all states are equally likely,
Proposition 4 can be strengthened to show that all optimal portfolios are
aligned. This replicates the result for any complete market if investors are
all risk averse and use objective probabilities.

Proposition 5 (Weak Monotonicity of Decision-Weighted Portfolio
Returns). Assume a complete market with equally likely states. Then the
returns on the optimal portfolio of any investor with concave or S-utility
who uses cumulative probability weighting will be weakly decreasing in the
objective price-probability ratio, θ = q/π. For risk-averse investors, the
returns will be strictly decreasing over ranges where the price-decision-weight
ratio, q/ω, is strictly decreasing and be constant over ranges where q/ω is
increasing or constant.
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Proof. Weak monotonicity of the returns follows directly from Proposition
4 because all states are equally probable. It only need be determined when
the ordering is strict for risk-averse investors.

Order the states by the ratio θ and consider a range of states where
q/ω is increasing or constant and assume, contrary to the proposition, that
x∗s < x∗s+1. From the first-order conditions in (12), the multiplier κs must
be zero when the portfolio returns differ so using (18)

x∗s = u′−1 ((ηqs − κs−1)/ωs)≥ u′−1 (ηqs/ωs)
x∗s+1 = u′−1 ((ηqs+1 + κs+1)/ωs) ≤ u′−1 (ηqs+1/ωs) .

(21)

The inequalities follow because the remaining two multipliers are nonneg-
ative and u′−1 is a decreasing function. But the monotonicity of u′−1 also
implies that

x∗s+1 ≤ u′−1 (ηqs+1/ωs) ≤ u′−1 (ηqs/ωs) ≤ x∗s (22)

which is a contradiction so x∗s = x∗s+1 when q/ω is increasing or constant.
Now consider a range where q/ω is decreasing and assume, contrary to

the proposition, that x∗s = x∗s+1. Suppose the portfolio is altered by earning
ε less in state s and qsε/qs+1 more in state s+1. This altered portfolio has
the same cost as the original, and changes the expected decision-weighted
utility by

∆�ω[v(x)] = ωs[v(x − ε)− v(x)] +ωs+1[v(x + qsε/qs+1)− v(x)]
≈ v′(x)qsε [ωs+1/qs+1 −ωs/qs] > 0

(23)
which is positive because ω/q is increasing. Again this is a contradiction
so x∗s < x∗s+1 when q/ω is decreasing.

We have already seen in Table 4 that this monotonicity result need
not obtain in a complete market with states having different probabilities.
However, it can be extended to such markets provided investors can
create financial contracts that are fair-value sub-state bets. When such
financial contracts can be created, any state with probability, π, and state
price, q, can be partitioned into two or more sub-states with proportional
probabilities and sub-state prices; i.e., q′/π′ = q/π for all sub-states of the
same original state. Proposition 5 can be applied to these equally probable
sub-states and then extended back to the original states by aggregation.34

34In some cases no equally probable subdivision of states is possible with a finite
number of sub-states. For example, when any state has an irrational probability, the equally
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Figure 3 illustrates the three ratios. The ratio q/π is falling (by
construction). The ratio ω/π is U-shaped because the decision weights
are larger than the actual probabilities for the outcomes in both tails.
The ratio q/ω is the quotient of the two and has an inverted U-shape.
It must be decreasing in the range where ω/π is rising, but is increasing
when ω/π is sufficiently steeply declining. The typical case is illustrated
with q/ω increasing for the smallest values of the market’s return. In
such an economy the optimal portfolio of a risk-averse decision-weight
maximizer will have the same return in all of the poorest outcome states
and will have returns increasing with the state in the better states, like
that of an objective-expected utility maximizer. The right-hand panel of
Figure 3 shows the optimal complete-market portfolio of an investor who
uses a Tversky-Kahneman weighting function. The investor has a constant
relative risk aversion of 2 and, if using objective probabilities, would hold
the market. For the TK weighting function with δ = 0.9, the investor’s
portfolio is constant with a loss of 19.7% whenever the market loses more
than 42.2%. For δ = 0.6, the return is a constant loss of 15.5% whenever
the market loses or has a gain less than 0.2%. This aspect of the optimal
portfolio resembles portfolio insurance, though the leverage on the upside
increases rapidly the higher is the market return. At a market return of
25%, the two portfolios’ slopes are 1.3 and 2.7; at a market return of 50%,
the slopes are 1.8 and 6.2.

An important implication of Proposition 5 is that with homogeneous
objective beliefs, the market portfolio itself will be objectively efficient in
a complete market. This means that a representative investor exists, and
all the strong intuitions that follow from this representation will remain
available.

Proposition 6 (Objective Efficiency of Market Portfolio under Probabil-
ity Weighting). Assume homogeneous objective beliefs, a complete market
with equally likely states, all investors are risk averse or have S-utility.
In addition, there is at least one risk-averse investor who uses objective
probabilities. Then, in equilibrium, the market portfolio’s returns will be

probable state partitioning must divide that state into m sub-states each with probability
π/m and must create in total n sub-states each with probability 1/n across all the original
states. Butπ/m �= 1/n whenπ is irrational. Of course, it will always be possible to construct
states that are equally likely to any desired accuracy as n →∞. And the proposition as
well as Proposition 6 below can be directly applied in a model with a continuum of states
and a continuous probability density.
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Figure 3: State price probability ratios and optimal state price to decision weight ratio.

Description: This figure illustrates the ratios of the state price to the true state probabili-
ties, q/π, and the state price to the decision weights, q/ω.

Interpretation: The former ratio is decreasing by assumption. The ratio, q/ω, is typically
increasing first, and decreasing later. Optimal decision weight portfolio returns are
constant for the increasing portion and increasing when q/ω is decreasing. In the right-
hand panel, the market has a lognormal distribution with parameters r = 5%, µ = 13%,
σ = 20%. The cumulative decision weighting function is that proposed by Tversky and
Kahneman with δ = 0.9 (dotted line) and δ = 0.6 (dashed line).

strictly decreasing in the price-probability ratio, and the market portfolio will
be objectively risk-averse efficient.

Proof. From Proposition 5, the returns on each investor’s optimal portfolio
are weakly ordered inversely to the objective price-probability ratio.
Because the market portfolio is a convex combination of these optimal
portfolios, its returns must also be weakly decreasing in the ratio. Now
assume this monotonicity is not strict; that is, assume there are two states
with different price-probability ratios but equal market returns. The risk-
averse investor using objective probabilities does hold a strictly monotone
portfolio with a higher return in the better state; therefore, if the market
is to clear with an equal return in the two states, some other investor
must hold a portfolio with a smaller return in the better state. But this
contradicts Proposition 5. So in equilibrium, the market portfolio’s returns
must be strictly decreasing in the objective price-probability ratio and
therefore optimal for some strictly risk-averse utility function.

Proposition 6 shows that the market is an objectively risk-averse
efficient portfolio; that is, the market portfolio is the optimal portfolio for
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some strictly risk-averse investor who does not use probability weighting
to modify the correct objective beliefs. This is significant because it assures
the existence of a risk-averse representative agent who uses the objective
probabilities. This means that price data alone cannot logically reject
a risk-averse objective-probability (classical) equilibrium in favor of a
(behavioral) equilibrium arising from S-utility or probability weighting.
However, this statement has several caveats. First, the proposition does
not prove that there is a unique representative agent so there may also
exist one (or more) S-utility representative agents who do use probability
weighting, and this latter representation might be viewed as statistically
more likely. Second, other information such as asset holdings, trades,
volume, etc. might be inconsistent with a classical equilibrium. Third, this
is a single-period result so there might be evidence in price dynamics that
are inconsistent with a classical equilibrium. Finally, all of the analysis
assumes homogeneous objective beliefs.

In this paper, only the first caveat will be examined. How do prices
differ between a standard and behavioral equilibrium. CAPM-like predic-
tions cannot be made without many more assumptions about the joint
return distribution of the individual assets and the market, but the effects
of CPT on market derivatives can be examined. To illustrate, suppose the
market portfolio has an objective lognormal distribution with a logarithmic
volatility of 20% and a risk premium of 8% in excess of the 5% interest rate.
As shown in Rubinstein (1976), the market will be the optimal portfolio for
an investor with a constant relative risk aversion of 2, and call option prices
will be given by the Black-Scholes model. If the representative investor
has S-utility or uses probability weighting, option prices will deviate from
those values. This is shown in Figures 4 and 5, which plot the implied
volatilities of various options.

In Figure 4, the representative investor has constant relative risk
aversion but uses TK probability weighting. The effect is straightforward. A
small probability weighting parameter, δ, puts more emphasis on the tails
increasing the subjective variance relative to the objective variance. This
increases the option’s implied volatility. The effect is approximately the
same for all options being only slightly larger for near-the-money options
whose prices are most sensitive to variance.

In Figure 5, the representative investor uses objective probabilities, but
has a TK utility function. This S-utility produces an obvious volatility smile
as is seen in actual option prices; however, the high-strike portion of the
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Figure 4: Implied option volatilities under decision weighting.

Description: This figure shows the Black-Scholes implied volatility for call options written
on the market portfolio with various strike prices. The market portfolio has a lognormal
distribution with a logarithmic variance of 20%. The option prices are determined
assuming a representative investor with constant relative risk aversion and a TK probability
weighting function with parameter δ.

smile is more pronounced which is atypical. Implied volatilities are also
significantly lower than the true volatility; though, as seen in Figure 4,
probability weighting would offset this result. The smile is deeper and
implied volatilities are lower the larger is the utility function’s curvature,
α and β . The loss aversion parameter, λ, has only a minor effect on the
level of the implied volatility.

Proposition 6 remains valid even if the market is apparently
incomplete, provided investors are unconstrained in the types of financial
contracts they can introduce. If the introduction of financial assets is
unrestricted but the market remains apparently incomplete, the shadow
prices of any financial assets that have not been created must be the same
for all investors otherwise it would benefit those investors to introduce
such contracts. In particular, they must agree on the state prices for
all states even if all pure state securities cannot be constructed from
the exiting assets. If pure state financial securities were introduced at
these shadow prices, the gross demand for them would be zero, and the
equilibrium would remain unchanged.35

35Because S-utility investors are risk seeking over losses, they would typically “more
than complete” the market introducing financial assets that provided pure within-state bets
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Figure 5: Implied option volatilities with S-utility.

Description: This figure shows the Black-Scholes implied volatility for call options on
the market portfolio with various strike prices. The market portfolio has a lognormal
distribution with a logarithmic variance of 20%. The option prices are determined
assuming a representative investor with TK utility with parameters α, β , and λ.

If market completion with financial assets is not allowed, then the
inverse ordering between optimal portfolios and the ratio, q/π, need not
hold. Of course, that property need not hold amongst investors using the
true probabilities either. The portfolio problem in an incomplete market
can be analyzed as above by adding constraints, but little can be said
in general. The next two sections of the paper examine two incomplete
markets, which have been analyzed extensively, markets displaying two-
fund separation and those in which mean-variance analysis is applicable.

as well. These claims serve to concavify their utility functions; the representative investor
would have linear utility for losses and concave utility for gains.
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6 Cumulative Prospect Theory and Mutual Fund Separation

Outside of complete markets, the most commonly analyzed market
structure is one in which mutual fund separation holds — in particular,
the mean-variance model of two-fund separation. Two-fund separation
is of considerable interest in finance because it yields strong predictions
with sound intuition in a tractable setting. Under two-fund separation,36

the set of optimal portfolios is spanned by the risk-free asset and a single
risky portfolio that is, perforce, the market portfolio of risky assets. A
complete market ensures the existence of a representative investor who
holds the market. Two-fund separation goes beyond that. It is essentially a
construction of the representative investor identifying the exact first-order
condition that prices all assets in relation to the market portfolio. There
are two types of two-fund separation. The first holds when all investors’
utility functions are from the linear-risk-tolerance (LRT) class with the
same cautiousness (see Cass and Stiglitz, 1970), the second when all asset
distributions come from the separating distributions (see Ross, 1978).

Utility-based two-fund separation will not obtain under CPT. Clearly
the S-utility functions with both concave and convex portions are not of
the necessary LRT class. Nor, will utility-based two-fund separation hold
even for LRT investors who use probability weighting unless they have
identical probability weights. While this could be coincidentally true, it
would typically only arise if investors had homogeneous objective beliefs
and used the same weighting functions. For example, mean-variance
analysis remains valid for quadratic utility under probability weighting. All
portfolios can be ranked by just knowing their mean and variance, but the
means and variances required are those computed using decision weights.
Therefore, investors will have different (decision-weighted) mean-
variance efficient frontiers if they use different probability weighting
functions even if they have homogeneous objective beliefs. Their optimal
portfolios will no longer be the same except for leverage, and the CAPM
equilibrium will not result.

Distributional-based separation also cannot hold in general with S-
utility or probability weighting. Ross (1978) has shown that investors hold

36In the absence of a risk-free asset, two-risky-fund separation can still hold for certain
restrictions on utility or probability distributions or both; see Cass and Stiglitz (1970) and
Ross (1978). Throughout this paper only two-fund money separation, when one of the two
mutual funds is the risk-free asset, is considered.
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combinations of a single risky-asset index portfolio and the risk-free asset
if and only if returns are characterized by

r̃i = r f + bi ỹ + ε̃i
with �[ε̃i|y] = 0 ∀i

∃α such that 1′α= 1,α′ε̃ ≡ 0.
(24)

Under the conditions in (24), all risk-averse investors optimally hold some
mixture of the risk-free asset and the index portfolio, α, with excess return
ỹ, which has no residual risk. The optimality of these mixtures follows
immediately by second-order stochastic dominance. These conditions are
clearly necessary for two-fund separation under CPT, which includes an
identity weighting function and piecewise linear, concave utility, but they
are not sufficient.

An investor with S-utility might not choose the stochastically dominat-
ing index portfolio if some other portfolio has nonzero residual risk only
when ỹ is sufficiently below its mean. In this case, the gains on the two
portfolios can have the same distribution, but the extra riskiness of the
losses on the portfolio with residual risk can lead to its preference by S-
utility investors because they are risk seeking with respect to losses. So an
S-shaped utility function destroys Ross’ two-fund separation result even
with no probability weighting.

Probability weighting also extinguishes two-fund separation even
among risk-averse investors. For example, suppose y = {−1,2} with equal
probability, r f = 1, and an asset with b = 1 has ε ≡ 0 when y = −1
and ε = ±1 with equal probability when y = 2. The residual risk ε is
conditionally mean zero, as required, making the asset riskier than the
index. Consider a risk-averse investor with the concave utility function
u(w) = w for w > 0 and u(w) = 3w for w ≤ 0 and a probability weighting
function that assigns Ω(0.5) = 0.5, Ω(0.75) = 0.70. This investor will
compute an expected payoff and utility of 1.6 for the asset and 1.5 for the
index. De-levering the index with lending decreases its expected return
and utility. Levering the index with borrowing increases its expected return
but also decreases its expected utility, as the bad outcome moves into the
high marginal utility region. So this investor’s optimal portfolio cannot be
a levered position in the index, and two-fund separation does not hold.

This example illustrates the complexity of establishing two-fund sepa-
ration under probability weighting. Two-fund separation requires showing
that for any increasing, concave utility function and any portfolio in a
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large class, there exists a portfolio in a smaller class (those that have no
idiosyncratic risk) that gives at least as high an expected utility. Using
objective probabilities, any portfolio in Ross’ class with a given b has the
same expected return as and is more risky than the levered position in
the index with the same b. Because this specific levered index portfolio
stochastically dominates all assets with the same b value, each utility
function need not be considered separately — two-fund separation holds
trivially. However, with probability weighting, a levered position in the
index no longer dominates all other portfolios with the same b because the
convex portion of an inverted-S-shaped weighting function can increase
the subjective mean after an objective-mean-preserving spread. Therefore,
risk-neutral investors and those sufficiently close to risk neutral will
prefer the portfolio that is objectively dominated. This does not mean
that two-fund separation fails, but it does mean that to verify separation
just by comparing portfolios with the same leverage b is insufficient.
Every portfolio with idiosyncratic risk must potentially be compared to
all levered index positions with the same or higher subjective mean.

Although Ross’ two-fund separation does not hold, two related ques-
tions immediately arise. Are there weighting functions and restrictions
on utility that do preserve two-fund separation for Ross’ distributions?
Can the class of separating distributions be further restricted so that
mutual fund separation does hold for some or all S-utility functions and
inverse-S weighting functions? In fact, the first question has already mostly
been answered by the previous examples. Two-fund separation cannot
hold for all of the distributions in Ross’ class whenever the set of utility
functions considered includes any with any strictly convex portion because
a portfolio with residual risk in only that region will be preferred to
the same portfolio with no residual risk. Similarly any strictly convex
portion of the probability weighting function increases the subjective mean
of some objective-mean-preserving spreads eliminating the second-order
stochastic dominance.

Ross’ two-fund separation, therefore, can remain valid only for risk
aversion and concave weighting functions. Proposition 7 shows that these
conditions are sufficient as well.

Proposition 7 (Two-Fund Separation with Concave Probability Weight-
ing). Ross’ two-fund separation result holds for risk-averse investors if and
only if all investors have weakly concave probability weighting functions.
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Proof. The necessity of concavity of the weighting function has already
been discussed. The Ross conditions in equation (24) are sufficient for
two-fund separation under probability weighting if the weighting function
preserves the second-order stochastic dominance inherent in the objective
probabilities.

Levy and Kroll (1979) show that two of the equivalent definitions
of second-order stochastic dominance of the distribution F over the
distribution G are

�F[u(x)] ≥ �G[u(y)] ∀u with u′ ≥ 0, u′′ ≤ 0

⇔ 0≤ ∫ P0 [F−1(p)− G−1(p)]dp ∀P.
(25)

Second-order stochastic dominance is preserved under the weighting
function, Ω, if

�Ω(F)[u(x)] ≥ �Ω(G)[u(y)]⇔ 0≤
∫ P

0

[F−1(Ω−1(p))− G−1(Ω−1(p))]dp∀P.

(26)
Using the change in variable, p ≡ Ω(q), the integral in (26) can be re-
expressed as

∫ Ω−1(P)

0

[F−1(q)− G−1(q)]Ω′(q)dq

= H(q)Ω′(q)
����
Ω−1(P)

0

−
∫ Ω−1(P)

0
H(q)Ω′′(q)dq (27)

where

H(Q) ≡
∫ Q

0

[F−1(q)− G−1(q)]dq.

The first term on the right-hand side of (27) is nonnegative because
H(0) = 0 and H andΩ′ are nonnegative elsewhere. The remaining integral
is nonpositive as H is nonnegative and Ω′′ is non-positive. Therefore the
integral in (26) is nonnegative and stochastic dominance is preserved.

Recall that the decision weight density is the product of the probability
density and the derivative of the weighting function. A concave weighting
function has a decreasing derivative so it emphasizes the probabilities
of the low payoffs relative to those of high payoffs; therefore, �Ω[ε̃] ≤
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�[ε̃] = 0. So any mean-preserving spread, ε, adds risk and cannot increase
the expectation. This ensures that objectively stochastically dominated
prospects remain stochastically dominated under probability weighting.

To preserve two-fund separation under inverse-S weighting functions
as utilized in CPT rather than just concave weighting functions, objective-
mean preserving spreads that increase the subjective mean must be
precluded. One way to accomplish this is to assume enough symmetry
so that any mean-increasing alteration in one tail has an offsetting mean-
reducing alteration in the other tail. This requires symmetric distributions
and “no better than symmetric” probability weighting adjustments.

Definition 2. A probability weighting function, Ω, for a cumulative distribu-
tion, F, is a symmetric Quiggin weighting (SQW) if it is strictly increasing,
concave below 1/2, and complementary around 1/2 with Ω(1 − F) = 1 −
Ω(F).37 It is a (strictly) concavified symmetric Quiggin weighting (CSQW) if
Ω(F) ≡ Ψ(Ξ(F)) where Ξ(·) is an SQW, and Ψ(·) is strictly increasing and
(strictly) concave.

As its name implies, an SQW ensures that a symmetric distribution will
remain symmetric after it is applied by adjusting the two tails in the same
way. It is the same as applying the same weighting function separately to
gains and losses with the restriction that an objective probability of 1/2 is
always mapped to a subjective probability weight of 1/2. When a strictly
CSQW is applied, it introduces a form of pessimism weakly increasing
every percentile. When applied to a symmetric distribution, the probability
weight that a loss exceeds some size becomes larger than the probability
weight that a gain exceeds the same size.

Proposition 8 (Two-Fund Separation under CSQW). Sufficient condi-
tions for two-fund separation under risk aversion and probability weighting
are: (i) returns satisfy the Ross conditions for two-fund separation as given
in (24); (ii) the distributions of ỹ and all asset returns, r̃i, are symmetric;38

and (iii) the probability weighting function is a CSQW.
37Quiggin (1982) originally proposed that weighting functions should be increasing,

concave (convex) below (above) 1/2, and that Ω(1/2) = 1/2. The only additional
property required here is complementarity symmetry. The symmetry restriction ensures
that Ω(1/2) = 1/2 and that Ω is convex above 1/2. Note that the identity function (i.e.,
using objective probabilities) is a SQW and any concave weighting function is a CSQW.

38Assumption (ii) does not require that the distributions of ε̃ be symmetric. If the
distributions of ε̃ conditional on ỹ = ȳ + a and that of −ε̃ conditional on ỹ = ȳ − a
are identical, then the asset returns will be symmetric.
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Proof. Let F and G be the cumulative distributions of r f + ỹ and r f +
bi ỹ + ε̃i. Because F and G are the distributions of symmetric random
variables, the symmetric transformations Ξ(F) and Ξ(G) preserve the
riskiness ordering as shown in Lemma 3 in the Appendix. Therefore,
Ξ(G) is also subjectively riskier than Ξ(F) in a Rothschild-Stiglitz sense.
Now applying Proposition 7, the increasing, concave transformation Ψ
preserves the second-order stochastic dominance.

Unfortunately assumption (iii) does not apply to the TK weighting
function for any parameter value nor to many of the other probability
weighting functions used in CPT. The second derivative of a CSQW is
Ω′′ = (Ξ′)2Ψ′′ + Ξ′′Ψ′, and because Ψ′′ ≤ 0 < Ψ′, its inflection point can
only occur where Ξ′ is positive which, by assumption, is for an objective
probability in excess of one-half. However, the inflection point for the TK
probability weighting function occurs at a probability less than one-half
for all values of δ and occurs at 1/e for all parameter values of α for
Prelec’s preferred single parameter function (β = 1).39 In fact, using a non-
parametric approach to determine the “least favored” probability, Wu and
Gonzalez (1996) have estimated that the test subjects’ inflection points
are no higher than 40%. This does not mean that the typical weighting
functions will necessarily induce investors to seek out symmetric objective
risks, but only that it cannot be precluded they will not do so. Their actions
depend on their utility functions as well.

Furthermore, even the assumed symmetry of the distributions in
Proposition 8 is insufficient to guarantee two-fund separation with S-
utility. The symmetry assures that risk in both the upper and lower tails
is the same, but to preserve the separation, the bad upper-tail risk has to
more than offset the good lower-tail risk. Consider an asset or portfolio
that has a small amount of residual risk (σ2

ε ≈ 0), which is nonzero only
at two isolated points of the index y. By symmetry these two points must
be equally distant from the mean, ȳ ± a.40 Because the levered index and
the asset have the same return except at those two points of the index

39The inflection point for Prelec’s two-parameter function can be at probabilities above
one-half for some parameter values; e.g., α= 0.9, β = 0.7.

40With no loss of generality, it can be assumed that ȳ > 0 because −y can equally well
serve as the random variable describing the index. In any case investors will hold an index
with a symmetric distribution in preference to the risk-free asset only if it has a positive
risk premium.
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return and the probability of those two points are equal by symmetry, the
difference between the index’s expected utility and that of the asset is

v(r f + b ȳ + ba) + v(r f + b ȳ − ba)
−�ε[v(r f + b ȳ + ba+ ε̃) + v(r f + b ȳ − ba+ ε̃)]
≈ −1

2[v
′′(r f + b ȳ + ba) + v′′(r f + b ȳ − ba)]σ2

ε ,
(28)

with the approximation from a second-order Taylor expansion. To guar-
antee two-fund separation, the bracketed term must be negative for all
possible comparisons. If both arguments of v′′ are positive this is true,
but they can have mixed signs as well with the negative argument being
smaller in magnitude. Therefore, two-fund separation is guaranteed to
hold only if v′′(−x1) + v′′(x2) ≤ 0 for all 0 < x1 < x2. Unfortunately,
this condition cannot hold for any utility function defined for all positive
outcomes that is increasing, twice-differentiable, and with a strictly convex
loss portion41 so Ross’ two-fund separation cannot apply to such a class
even with symmetric distributions.

The problem of extending two-fund separation to CPT still remains.
Solving this problem with S-utility requires an assumption stronger than
symmetry. Solving it with probability weighting requires comparing
portfolios with different levels of both systematic and idiosyncratic risk
and not just the latter. Stronger distributional assumptions that allow the
comparison of all portfolios are required. One answer to this problem is
mean-variance analysis — the same hypothesis that simplifies portfolio
comparison under objective probabilities. As shown in the next section,
two-fund separation and a resulting CAPM equilibrium do hold in many
cases under CPT conditions.

7 Mean-Variance Analysis under CPT

Mean-variance analysis is a complete description of a portfolio problem
when utility is quadratic or when asset returns are drawn from the class of
elliptical distributions.42 Obviously a quadratic function cannot have the

41If v′′(−x1) = c > 0, then the condition requires that v′′(x) ≤ −c∀x > x1. But if the
second derivative is bounded away from zero, the first derivative cannot remain positive
as x increases without bound. Mutual fund separation therefore requires some additional
conditions based both on the utility functions and an upper bound on asset returns.

42See Chamberlain (1983), Owen and Rabinovitch (1983), and Ingersoll (1987) for
more details about elliptical distributions and their application to the mean-variance
portfolio problem.
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S-shape desired under CPT. A two-piece quadratic function can have this
shape, but expected utility is not completely described by the mean and
variance for such utility functions.43 However, most of the mean-variance
results of elliptical distributions, including the CAPM, continue to be valid
with S-shaped utility and probability weighting.

Elliptical distributions get their name from the shape of their iso-
probability manifolds. The best-known example of an elliptical distribution
is the multivariate normal. More generally, an elliptical distribution for a
vector of n rates of return r is prescribed by its characteristic function, Φ,
and its probability density, g, if the latter exists.

Φ(t;µ,Θ) ≡ �[eit′r] = eit′µϕ(t′Θt)

g(r;µ,Θ, n) = kn|Θ|−1/2h
	
(r−µ)′Θ−1(r−µ)
 , (29)

where µ is the vector of means and Θ is the covariance matrix.44 The
function h can be any scalar function from the nonnegative reals to the
nonnegative reals that can be normalized to give unit mass; kn is a
normalizing constant. For example, in the multivariate normal h(q) =
e−q/2, and kn = (2π)−n/2.

Elliptical distributions have two properties important for portfolio
analysis. Every portfolio is completely characterized by its mean and vari-
ance and higher mean is preferred. These properties along with conditions
under which variance is disliked are given in the next proposition.

Proposition 9 (Mean-Variance Characterization for CPT). For any ellip-
tical distribution, every portfolio is completely characterized by its objective
mean and variance. For a fixed objective variance, all investors with increas-
ing utility prefer a higher objective mean. If an investor has strong loss aver-
sion and modifies probabilities with a CSQW, then variance is disliked on any

43Using the pieced quadratic utility u(x) = x − bx2 for x ≥ 0 and u(x) = −λ(x − cx2)
for x < 0, four moment parameters are required to express expected utility. The simplest
set is �[x |x ≥ 0], �[x2|x ≥ 0], �[x |x < 0], and �[x2|x < 0]. If probability weighting is
also applied, then these must be the probability-weighted expectations, which generally
will differ among investors even if they have homogeneous objective beliefs.

44If there is a risk-free asset, it can be included separately in the usual fashion. Θ is
non-singular (after removing any redundant risk-free asset) to prevent arbitrage. Elliptical
distribution can be fat-tailed with undefined variances or even means, e.g., the multivariate
Cauchy distribution. Because all elliptical distributions are symmetric, µ is always the
vector of medians, and Θ is a general co-dispersion matrix even if means or variances
are undefined. The discussion below remains valid and the CAPM holds in terms of µ and
Θ for such elliptical distributions, provided, of course, that expected utility is defined.



Prep
rin

t

46 Ingersoll

portfolio with a positive subjective mean (µP > x̂), and the investor’s objective
assessment function JΩ(µ,σ) ≡ �Ω[v(r̃P(µ,σ)− x̂)] is quasiconcave.

Proof. It is well known that all linear combinations of elliptical variables
are completely characterized by their mean and variance. This can be
verified immediately from (29). Define the vector t ≡ tα, then the charac-
teristic function of the return on any portfolio α with mean, µP = α

′µ, and
variance, σ2

P = α
′Θα, is �[exp(itα′r)] = exp(itµP)ϕ(t

2σ2
P), Therefore,

a portfolio has the univariate probability density, g(rP ;µP ,σ2
P , 1), and

its rate of return can be expressed as a translated and scaled variable
r̃P = µP + σP ρ̃ where ρ̃ is a standardized elliptical variable with zero
mean and unit variance.

Define the derived objective mean-variance assessment function for a
particular weighting function, Ω, as

JΩ(µ,σ) ≡ �Ω[v(r̃p(µ,σ)− x̂)] ≡
∫ ∞
−∞

v(X (ρ))dΩ(F(ρ)) (30)

where X (ρ)≡ µ+σρ− x̂ , and F is the univariate cumulative distribution
for ρ. X (ρ) is strictly increasing in µ, v is strictly increasing, and dΩ(F(ρ))
is nonnegative; therefore, JΩ must be strictly increasing in µ.

For the assumed form of the weighting function, define the subjective
density for ρ as

dΩ(F(ρ)) = dΨ(Ξ(F(ρ)))

= Ψ′(Ξ(F(ρ)))Ξ′(F(ρ))dF(ρ) ≡ψ(ρ)ξ(ρ) f (ρ)dρ. (31)

Ψ is strictly increasing and concave so its derivative, ψ, is positive and
decreasing. Ξ is an SQW so its derivative, ξ, is an odd function with
ξ(−ρ) = ξ(ρ). Substituting (31) into (30), differentiating, splitting the
integral at ρ = 0, and combining the two parts gives

∂ JΩ(µ,σ)
∂ σ

=

∫ ∞
0
ρξ(ρ) f (ρ)[v′(X (ρ))ψ(ρ)− v′(X (−ρ))ψ(−ρ)]dρ < 0.

(32)
The first three factors in the integrand are all positive, so the sign of
∂ JΩ/∂ σ is the same as the sign of the term in square brackets. As
previously noted, ψ is positive and decreasing so ψ(−ρ) ≥ ψ(ρ) > 0.
In addition, v′(X (−ρ)) > v′(X (ρ)) > 0 when the portfolio’s mean exceeds
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x̂ so the bracketed term and ∂ J/∂ σ must both be negative, meaning vari-
ance is strictly disliked on all portfolios with a positive subjective mean.45

The signs of the two partial derivatives ensure that over the range of
positive subjective means, the µ-σ indifference curves of JΩ are strictly
increasing and the function is quasiconcave.

Because the derived utility function, JΩ, is quasiconcave, and the set
of feasible portfolios is convex in µ-σ space, standard optimization tech-
niques apply. Proposition 9 together with homogeneous objective beliefs
and the usual no-market-frictions assumptions is more than required to
prove that any resulting equilibrium is the CAPM. However, all this is not
quite sufficient to prove that an equilibrium exists. Stated formally:

Proposition 10 (Objective CAPM under CPT). Assume (i) the returns on
all assets are elliptically distributed, (ii) all investors have strictly increasing
utility, homogeneous objective beliefs, a common single-period horizon, and
evaluate outcomes using a strictly increasing and once differentiable proba-
bility weighting function, (iii) there are no transactions costs or differential
taxes, (iv) borrowing and lending (or if there is no risk-free asset, short
sales) are unrestricted, and shares are infinitely divisible. Then, provided an
equilibrium exists, two-fund separation and the CAPM relation between the
objective means and covariances will obtain.

Proof. The proof follows immediately from Equation (30) of Proposition 9.
Because JΩ is strictly increasing in µ, all optimal portfolios must be on
the upper limb of the objective minimum-variance hyperbola (if there
is no risk-free asset) or on its tangent borrowing-lending line (if there
is). In either case, the set of optimal portfolios is spanned by any two
portfolios it includes. If an equilibrium exists, then the market portfolio is
a convex combination of optimal portfolios and is mean-variance efficient.
The relevant objective CAPM equilibrium results in the usual fashion.

Of course, the CAPM of this proposition need not be the same as would
prevail if all investors used objective probabilities and were risk averse.

45For those values of ρ where X (−ρ) is a subjective gain, X (ρ) is a larger gain and
v′(X (−ρ)) > v′(X (ρ)) > 0 because v is strictly increasing and concave over gains. For
those values of ρ where X (−ρ) is a subjective loss, −X (−ρ) is a gain and v′(X (−ρ)) >
v′(−X (−ρ)) > v′(X (ρ)) > 0. The first inequality is true because v is strongly loss averse.
The second and third inequalities are true because X (ρ)> −X (−ρ) if the portfolio’s mean
return is a subjective gain and v′ is positive and decreasing over gains.
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In particular, probability weighting will tend to increase the market price
of risk as it emphasizes the extreme outcomes, making investors more
reluctant to take on the risk of the market. Loss aversion will also do this,
though the convexity of utility for losses will tend to offset a higher price of
risk. Furthermore, the makeup of the market portfolio itself will typically
change, as a different market price of risk will alter the point of tangency
of the borrowing-lending line.

Although this proposition is labeled as a CPT CAPM, it is applicable
in a much wider context. Utility can be globally risk averse, S-shaped,
a combination of the two, as in Bowman et al. (1999), or have other
shapes. It need only be strictly increasing and sufficiently well behaved
that expected utility is defined. The probability weighting function need
not emphasize rare events or have any particular shape provided Ω′ > 0 so
that it always assigns positive decision weights. The assumptions of strong
loss aversion and a CSQW, which are used in Proposition 10 to prove that
variance is disliked, are not required for the CAPM. Proposition 11 proves
that if any equilibrium exists, then it must be the objective CAPM simply
because portfolios with higher means are always preferred.

However, the proposition does not give explicit conditions for the
existence of an equilibrium. This requires that each investor’s demand
be finite, which necessitates that the indifference curves become steeper
than the slope of the borrowing-lending line for sufficiently high σ so
that they have a finite tangency.46 In the standard, risk-averse model,
indifference curves are increasing and convex, so buying and borrowing
pressure in an exchange economy will increase stock prices or the interest
rate thereby reducing the slope of the borrowing-lending line until markets
clear. But as shown in Proposition 10, a dislike of variance only guarantees
that indifference curves are increasing not that they are convex. Other
conditions are needed to ensure that the demand for leverage is finite.

One simple way to guarantee finite leverage is an explicit portfolio
constraint like a maximum tolerable loss. For the realization, ρ, the

46There must also be nonzero demand for the tangency portfolio. This is also true in the
standard model, and the sufficient condition here is the same. If the tangency portfolio has
an expected rate of return µt and standard deviation σt , a levered position has a return of
r f + b(µt − r f )+ bσt ρ̃. The change in expected utility due to increasing leverage starting
from an initial position of no leverage is (∂�Ω[v]/∂ b)|b=0 = �Ω[v′(r f− x̂)(µt−r f+σt ρ̃)] =
v′(r f − x̂)(µt − r f ) so every investor’s demand will be positive if the tangency portfolio’s
expected rate of return exceeds the risk-free rate, assuming v is differentiable.
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subjective rate of return on the tangency portfolio levered by b is r f +
b(µt − r f + σtρ) − x̂ . Therefore, to ensure a minimum return of x0 for
bounded elliptic variables with |ρ| ≤ a, leverage must therefore be limited
to47

b ≤ x0 − r f + x̂

µt − r f −σt a
if

µt − r f

σt
< a. (33)

If the Sharpe ratio is higher than a, there is no restriction on leverage
as the worst return improves with b. However, if this is true and some
investor does desire an infinite position, his demand will increase stock
prices or the interest rate, lowering the Sharpe ratio until an equilibrium
is achieved, just as in the standard model.48

If the elliptic variable has an unbounded domain, then a finite worst
return is not possible on any portfolio other than the risk-free asset alone
so any constraint must be probabilistic; e.g., the probability that the return
falls short of x0 must be smaller than p0. The probability of a return smaller
than r f + b(µt − r f +σtρ)− x̂on the levered tangency portfolio is F(ρ).
So, assuming p0 ≤ 1/2,49 leverage must be limited by

b ≤ x0 − r f + x̂

µ− r f +σF−1(p0)
if

µ− r f

σ
< −F−1(p0). (34)

Here −F−1(p0) replaces a in (33), but otherwise the reasoning remains
the same.

In the absence of some explicit portfolio constraint, there must be
restrictions on the utility and weighting functions to ensure finite demand.

47If no risk-free asset exists, then this and later results can be handled using the zero-
beta version of the CAPM. By the usual mean-variance mathematics, there is a minimum-
variance zero-beta portfolio corresponding to any efficient portfolio on the upper limb
of the minimum variance hyperbola. A portfolio combination of these two with fraction
b invested in the efficient portfolio has a return of x = µz + b(µt − µz) + [b2σ2

t + (1 −
b)2σ2

z ]
1/2ρ − x̂ where µz and σz are the mean and standard deviation of the zero-beta

portfolio and ρ is a standard elliptical variable. Because the square root factor is larger
than bσt , the portfolio’s return is less than µz + b(µ−µz +σtρ)− x̂ when ρ < 0 and the
constraint would be violated. Therefore, the limitations on leverage as given in (34) and
(35) with r f replaced by µz apply. In fact, this constraint on leverage is too loose. Weaker
restrictions are sufficient to show that unbounded leverage is undesirable.

48This does not mean the Sharpe ratio cannot exceed a in the resulting equilibrium; a
is simply the largest value ensuring an equilibrium regardless of preferences.

49Deriving the inequality requires that the denominator in (35) is negative; therefore,
F−1(p0) must be as well. If the restriction is instead that the subjective probability weight
cannot exceed P0, then F−1(Ω−1(p0)) replaces F−1(p0) in Equation (35).
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From Proposition 2, investors with extreme-risk avoidance who use the
true probabilities do not take unbounded positions.50 This result extends
to investors who use CSQW decision weights, as they increase the impor-
tance of the lower tail and therefore reduce expected utility. But these
assumptions are stronger than needed.

Barberis and Huang (2008) considered a related case with a multi-
variate normal distribution and investors having identical TK utility (with
α = β), identical TK weighting functions, and a zero-utility reference
return equal to the risk-free rate. They show that an equilibrium exists.
On the other hand, De Giorgi et al. (2004) show that an equilibrium does
not exist if the model is altered to have investors with heterogeneous TK
utility functions each with αi = βi.

51 There is no equilibrium precisely
because such investors lack extreme-risk avoidance and desire unbounded
positions in the tangency portfolio. To ensure an equilibrium, the latter
authors propose a piecewise exponential utility function that is bounded
below and above and also ignore probability weighting.52 Together, these
assumptions are operationally equivalent to extreme-risk avoidance and
ensure that high leverage is not desirable.

This result is easily extended to cover all cases with bounded, weakly
loss-averse utility functions with x̂ ≤ r f and probability weighting func-
tions characterized by Ω(1/2) ≥ 1/2. Like the concavity of a CSQW, the
latter assumption is a form of pessimism generating a subjective median
below the objective median. Suppose the limiting values of the utility
function are v(−∞) = v and v(∞) = v̄, with −v > v̄ because utility
is weakly loss averse.53 The zero-utility point for a levered position in
the tangency portfolio occurs at ρ = ( x̂ − r f )/b − S where S is the
tangency portfolio’s Sharpe ratio. In the limit as b→∞, subjective losses

50Proposition 2 was proved for a finite state space, but it can be extended to a
continuous state space with elliptical assets by a limiting argument.

51Some heterogeneity is typically required for an equilibrium to fail to exist. If all
investors are identical, then there usually is a trivial equilibrium with each investor
holding exactly the market portfolio since that is the only symmetric feasible strategy.
This simplification is, of course, the basis for representative agent models.

52Even bounded utility is insufficient to guarantee the existence of an equilibrium with
no restrictions on the probability weighting function.

53Since utility is strictly increasing and bounded, the greatest lower bound and the
least upper bound of the utility function are the limiting values. This proof remains valid
if there is no lower bound on utility, but if there is only an upper bound, then utility has
extreme-risk avoidance and Proposition 2 applies.
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(gains) occur for all realizations of ρ less (greater) than −S. In addition,
all subjective losses will have a realized utility of v, and all subjective
gains will have a realized utility of v̄ except at the singular point of zero
utility, which occurs with probability zero. In the limit, expected utility is
therefore

�Ω[v(r f +b(µ−r f )+bσρ̃− x̂)] −−−→
b→∞ Ω(F(−S))v+[1−Ω(F(−S))]v̄. (35)

If S is zero, then expected utility is negative because Ω(F(0)) ≥ 1/2 by the
assumed pessimism. By continuity, the expected utility remains negative
for Sharpe ratios near zero. So, as before, stock prices are always bid up to
keep demand finite at some positive Sharpe ratio and an equilibrium will
obtain. If Ω(1/2) < 1/2, there may be no equilibrium as demand for the
tangency portfolio might be infinite even with a Sharpe ratio of zero, and,
of course, with a negative Sharpe ratio, all investors will wish to short it.54

Unfortunately, while elliptical returns might be a reasonable descrip-
tion of the returns on the primary assets in an economy, it certainly does
not describe the returns on the myriad derivative contracts that could be
introduced on those primary assets. In fact, if a set of assets has an elliptical
return, then a vanilla call or put option on any one of them cannot have
a return that falls into the same elliptical class because one tail of the
distribution is eliminated. Fortunately, the CAPM equilibrium can still be
partially valid even if two-fund separation does not hold.

Dybvig and Ingersoll (1982) have shown that the linear relation
between risk premia and beta holds for the set of primary assets described
by an elliptical distribution even in the presence of non-elliptical derivative
contracts, provided the market is complete or effectively so. The same
analysis applies here to the objective moments so only a summary of
the reasoning is given. The elliptical distributions fall within the class
of Ross’ separating distributions so amongst just the primary assets any
portfolio that is not mean-variance efficient is second-order stochastically
dominated. From Proposition 6, the market portfolio is objectively risk-
averse efficient within a broader class so it cannot be stochastically
dominated, and it must, therefore, be mean-variance efficient within just
the primary assets.

54This equilibrium-existence result does not require any special properties for investors’
probability weighting functions other than the “pessimism” assumption that Ω(1/2)≥ 1/2.
Consequently, it remains valid if separate gain and loss weighting functions are employed
provided only that Ω−(1/2)> Ω+(1/2).
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This reasoning does not mean that the CAPM can be used to price
derivatives. Only the primary (elliptically distributed) assets need have a
linear relation between their risk premiums and market betas.

8 Conclusion

This paper has analyzed the optimal portfolios of investors who have CPT’s
S-shaped utility or use probability weighting to assess outcomes. There is a
primary difficulty inherent in each of these two assumptions. S-shaped util-
ity induces a partial preference for risk and can lead to unbounded demand
resulting in a failure of equilibrium. Cumulative probability weighting
produces decision weights that depend on the outcome’s order, which, in
any portfolio problem, are endogenously determined. This increases the
complexity of the problem, but, more importantly, it can destroy results
like the efficiency of the market portfolio in a complete market, which
depend on identical orderings.

The notion of extreme-risk aversion, defined here, or a maximum
tolerable loss eliminate portfolios with unbounded positions and restore
most of the intuition about optimal portfolios that is present in models with
risk aversion. In addition, models with equally probable states (including
models with a continuous state space) reestablish the comonotonicity
property of optimal portfolios and restore the existence of a representative
(average) investor.

Under CPT preferences, Ross’ two-fund separation result holds only for
a subset of symmetric probability distributions and requires, in addition,
a limited set of concavified symmetric Quiggin weighting functions.
However, the CAPM pricing result of expected returns linear in beta,
derived under the assumption of elliptical distributions, holds whenever
an equilibrium exists.

The standard risk-averse representative-agent pricing results, includ-
ing the special case of the CAPM, continue to be valid in CPT. Therefore,
the distinct predictions of that theory are likely to be ones of degree and
not substance. The numbers or calibration will change, but not the basics.
Of course in some other contexts even those may change.
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