
Portfolio Performance Manipulation and
Manipulation-proof Performance Measures

Jonathan Ingersoll, Matthew Spiegel, William Goetzmann
Yale School of Management, PO Box 208200, New Haven, CT 06520-8200

Ivo Welch
Brown University, Department of Economics Box B, Providence, RI 02912

Numerous measures have been proposed to gauge the performance of active
management. Unfortunately, these measures can be gamed. Our article shows that
gaming can have a substantial impact on popular measures even in the presence
of high transactions costs. Our article shows there are conditions under which a
manipulation-proof measure exists and fully characterizes it. This measure looks like
the average of a power utility function, calculated over the return history. The case for
using our alternative ranking metric is particularly compelling for hedge funds whose
use of derivatives is unconstrained and whose managers’ compensation itself induces
a nonlinear payoff. (JEL G11, G23, G24)

Money managers often claim that they can provide superior performance
in their funds. Investors must rank and then select managers based upon
these claims, and any other information at their disposal. Ideally, manager
evaluation requires a consideration of the inputs to the investment process
as well as the resulting outcomes. Inputs include answers to questions
such as: What is a fund’s style and investment philosophy? Does the fund
practice closet indexing, does it have high expenses or high turnover, does
it employ window dressing, or engage in behavior which might result in
portfolios with aberrant performance?1 An assessment of the inputs allows
the returns that are earned to be evaluated in light of the risks undertaken
and the expenses incurred.

Along with this input information, output information measured by
periodic rates of return is readily available for most—but not all—sectors
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of the investment industry. Funds investing in nonmarketable assets
typically do not measure returns periodically. Conversely funds that
hold marketable securities generally report returns based on observed
security prices and dividend payments. Reporting requirements for open-
end mutual funds in the United States, for example, are quite explicit.
Every mutual fund must report its own performance by pricing individual
securities at end of day prices and use this to calculate daily net asset
values per share. Rating services such as Morningstar, Lipper, Reuters,
and Business Week are leading vendors of detailed information about past
mutual fund returns, expenses, and turnover. In some cases, particularly
in the hedge fund industry, returns may calculated over different time
intervals, or subject to chosen methods of valuation, but these are typically
available on a monthly basis to potential investors, and are often used
for the quantitative aspects of performance measurement and manager
evaluation.

Modern performance measurement dates to 1966 when William Sharpe,
using mean-variance theory, introduced the Sharpe ratio to provide
a quantifiable, one-dimensional measure for performance. It is still
probably the best-known and most widely used of the numerical ratings.2

Subsequently, Jensen (1969) introduced alpha, the first benchmark-based
measure. These, and their close analogues the information ratio, M-
squared, and others are now widely used to rank investment managers
and to evaluate the attractiveness of investment strategies in general.
Other measures, such as the Henriksson and Merton (1981) market timing
measure evaluate other aspects of performance but are based on the same
or similar theories.

Inherent in this quantitative evaluation process is the potential for
moral hazard. If investors use such scalar performance measures to rank
or select money managers, either directly or indirectly through reputation,
then money managers have an obvious incentive to take actions that
enhance these measures—either through effort and application of skill, or
through ‘‘information-free’’ activities that amount to manipulation. More
formally, manipulation is action taken to increase a fund’s performance
measure that does not actually add value for the fund’s investor. This has
been referred to as ‘‘information-free’’ investing as a way to emphasize
that it is not based upon the production and deployment of value-relevant
information about the underlying assets in the portfolio.3

Our article contributes in two ways to the literature on performance
evaluation. First, it points out the vulnerability of traditional measures
to a number of simple dynamic manipulation strategies. Second, it offers

2 The Sharpe ratio is used, for example, in the Schwab Select List and the Standard and Poor’s Select Funds
mutual fund ratings and in the Hulbert Financial Digest newsletter ratings.

3 See, for example, Brown et al. (2004) and Weisman (2002).
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a formal definition of the properties that a manipulation-proof measure
should have and derives such a measure.

For a measure to be manipulation-proof it must not reward information-
free trading. In this regard the existing set of performance measures
suffers from two weaknesses. First, most were designed to be used in a
world where asset and hence portfolio returns have ‘‘nice’’ distributions
like the normal or the lognormal. However, this ignores the fact that
managers can potentially use derivatives (or dynamic trading strategies)
to radically alter return distributions. Hedge fund returns, in particular,
have distributions that can deviate substantially from normality, and
the hedge fund industry is one in which performance measures like the
Sharpe ratio or information ratio are most commonly employed. Second,
‘‘exact’’ performance measures can be calculated only in theoretical
studies (e.g., Leland (1999) and Ferson and Siegel (2001)); in general,
they must be estimated. Since standard statistical techniques are designed
for independent and identically distributed variables, it is possible to
manipulate the existing measures by using dynamic strategies resulting in
portfolios whose returns are not so distributed even though they may come
from standard ‘‘nice’’ distributions.

The article describes three general strategies for manipulating a
performance measure. The first is the manipulation of the underlying
distribution to influence the measure. This can enhance measured
performance even if the evaluator calculates the measure without any
estimation error whatsoever. The second is the dynamic manipulation that
induces time variation into the return distribution in order to influence
measures that assume stationarity. This can enhance a portfolio’s score
even if the measure is calculated without any ‘‘estimation error’’ but
without regard to the (unobservable) time variation in the portfolio’s
return distribution. The third type encompasses dynamic manipulation
strategies that focus on inducing estimation error. Since measures have
to be estimated with real world data, there are strategies that can induce
positive biases in the resulting values. As a simple example, imagine an
evaluator who estimates a fund’s Sharpe ratio by calculating its excess
return’s standard deviation and average excess return over a 36-month
period using monthly data. Further assume the fund manager simply
wishes to maximize the expected value of the calculated Sharpe ratio. A
simple strategy that accomplishes this has the fund sell an out of the money
option in the first month, while investing the remaining funds in the risk free
asset. If the option expires worthless the portfolio is then invested wholly in
the risk free asset for the remaining 35 months. Whenever this happens the
portfolio has a zero standard deviation, a positive excess return, and thus
an infinite Sharpe ratio. Since there is a strictly positive probability that
the option will expire worthless the expected value of the calculated Sharpe
ratio must be infinity. Worse yet, as the article shows, even with goals
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other than maximizing the expected calculated performance value and
concern for other moments of the test statistic, a manager can deliberately
induce large economically significant measurement errors to his advantage.
Also notice that increasing the frequency with which returns are observed
does not shield the set of existing measures from this type of dynamic
manipulation.

If the set of current measures is vulnerable to manipulation the
question naturally arises as to whether a manipulation-proof measure
can be constructed. To answer this question, one first needs to
determine what ‘‘manipulation-proof’’ means. This article defines a
manipulation-proof performance measure (MPPM) as one that has four
properties:

1. The measure should produce a single valued score with which to
rank each subject.

2. The score’s value should not depend upon the portfolio’s dollar
value.

3. An uninformed investor cannot expect to enhance his estimated
score by deviating from the benchmark portfolio. At the same
time informed investors should be able to produce higher scoring
portfolios and can always do so by taking advantage of arbitrage
opportunities.

4. The measure should be consistent with standard financial market
equilibrium conditions.

It turns out that these four requirements are enough to uniquely identify
a manipulation-proof measure. The first condition eliminates measures
that produce only partial rankings. It also eliminates useless measures like
one that simply lists the set of available returns. The second condition
simply implies that returns are sufficient statistics rather than dollar gains
or losses. The third and fourth provide the actual structure. As the earlier
discussion indicates there are several ways to manipulate a performance
measure and the second condition implies that a MPPM must be immune
to all of them. In particular that means the manager cannot expect to
benefit by trying to alter the score’s estimation based upon observable
data. To accomplish this goal, the score must be (1) increasing in returns
(to recognize arbitrage opportunities), (2) concave (to avoid increasing the
score via simple leverage or adding unpriced risk), (3) time separable to
prevent dynamic manipulation of the estimated statistic, and (4) have a
power form to be consistent with an economic equilibrium.

If these four conditions are not met, then we show that there does not
exist any MPPM. This negative result is potentially as important as the
positive result, in that it implies no relative superiority among existing
measures. Given any numeric statistic evaluating performance, unless the
four above conditions are satisfied, there is always a way to enhance it
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without superior information. Hence there is no first-best solution to the
problem of the manager’s moral hazard—information-free manipulation
is always possible.

The MPPM derived in this article is

�̂ ≡ 1
(1 − ρ)�t

�n

(
1
T

T∑
t=1

[(1 + rt )/(1 + rf t )]1−ρ

)
. (1)

The �̂ statistic is an estimate of the portfolio’s premium return after
adjusting for risk. That is, the portfolio has the same score as does a risk-
free asset whose continuously-compounded return exceeds the interest rate
by �̂. Here T is the total number of observations, and �t is the length
of time between observations. These two variables serve to annualize the
measure. The portfolio’s (un-annualized) rate of return at time t is rt ,
and the risk-free rate is rf t . The coefficient ρ should be selected to make
holding the benchmark optimal for an uninformed manager.

The measure is easy to calculate. As an example, consider a fund with
monthly (i.e., �+ = 1/12) returns of −10, 5, 17, and −2% when the
monthly risk-free rate is 1%. If ρ is 2, then �̂ = 6.6%, and the fund has
the same score as a risk-free asset with an annual rate of return of 20.4%.
For ρ equal to 3, �̂ = 1.2%, and the fund is equivalent to a risk-free asset
returning 14.0%. The score is higher when ρ = 2 because its risk is not so
heavily penalized.

Our article was originally motivated by the question of whether the
existing set of performance measures is sufficiently manipulation-proof for
practical use. This is particularly relevant in the presence of transactions
costs, which may offset whatever ‘‘performance’’ gains a manager might
hope to generate from trading for the purpose of manipulating the measure.
Therefore, our article explores how difficult it is to game the existing
measures meaningfully. For the seven measures examined here—four
ratios (Sharpe (1966), Sortino and van der Meer (1991), Leland (1999), and
Sortino et al. (1999)), and three regression intercepts (the CAPM alpha,
Treynor and Mazuy (1966), and Henriksson and Merton (1981))—the
answer is not encouraging. Simple dynamic strategies that only relever
the portfolio each measurement period or buy (very liquid) at the money
options can produce seemingly spectacular results, even in the presence of
very high transactions costs. For example, consider the Henriksson and
Merton (1981) measure. A simple options trading scheme in the presence
of transactions costs equal to 20% produces ‘‘very good’’ results. The final
regression statistics report that the portfolio has returns that are superior
to the market’s nearly 65% of the time, and (using a 5% critical value)
statistically significantly better 9% of the time. Obviously, lower and more
realistic transactions costs only make matters worse. The other measures
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analyzed here are similarly susceptible to having their estimated values
gamed.

While many of the measures currently in common use can be
manipulated, there is one measure that is manipulation-proof under the
necessary conditions we specify: the Morningstar Risk Adjusted Rating
(Morningstar, 2006), introduced in July 2002. Morningstar evidently
developed it to provide a measure that was more generally applicable
and robust than its previous rating tools, and hence chose a measure
resembling a representative utility function. While they were not seeking a
manipulation-proof measure they found one.4

Our results have a number of implications for investment management.
Hedge funds and other alternative investment vehicles have broad latitude
to invest in a range of instruments, including derivatives. Mitchell and
Pulvino (2001) document that merger arbitrage, a common hedge fund
strategy, generates returns that resemble a short put-short call payoff.
Recent research by Agarwal and Naik (2000) shows that hedge fund
managers in general follow a number of different styles that are nonlinear
in the returns to relevant indices. In a manner similar to Henriksson
and Merton, Agarwal and Naik use option-like payoffs as regressors to
capture these nonlinearities. In fact, option-like payoffs are inherent in the
compensation-structure of the typical hedge fund contract. Goetzmann
et al. (2003) show that the high water mark contract, the most common
type in the hedge fund industry, effectively leaves the investor short 20% of
a call option. The call is at-the-money each time it is ‘‘reset’’ by a payment
and out-of-the money otherwise. Given the nonlinearity resulting from
these kinds of strategies it is particularly useful to have a performance
measurement tool that is not subject to informationless manipulation
through the use of derivatives.

The article is structured as follows. Section 1 discusses various ways
in which the Sharpe ratio and alpha can be manipulated. Section 2
discusses the manipulation of a number of other measures including those
using reward to variability (Section 2.1) and the Henriksson-Merton and
Treynor-Mazuy market timing measures (Section 2.2). Section 3 derives
the MPPM, and Section 4 concludes.

1. Manipulation of the Sharpe Ratio and Alpha

The Sharpe ratio and Jensen’s alpha were the first and probably are still the
most widely used performance measures of the risk-reward and benchmark
types. Although both are known to be subject to manipulation, they remain
widely used and often cited performance measures. They, therefore, make

4 Paul Kaplan, personal communication.
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good examples to introduce performance manipulation in more detail.
Other measures are examined in the next section.

1.1 Static analysis of the Sharpe ratio
A number of articles have shown that by altering the distribution function
governing returns the statistical mean and variance can be manipulated to
increase the Sharpe ratio to some degree. Ferson and Siegel (2001) look at
a fairly general case (that includes potentially private information) while
Lhabitant (2000) shows how using just a couple of options can generate
seemingly impressive values. Since the focus of this article is on dynamic
strategies and the development of a MPPM to prevent all sources of
manipulation the only static result presented here is the characterization of
the return distribution that maximizes the Sharpe ratio. Readers interested
in additional details should consult one of the above cited articles.

The Appendix shows that a Sharpe ratio maximizing portfolio in a
complete market is characterized by a state i return in excess of the interest
rate (xMSR

i ) of

xMSR
i = xMSR

[
1 + 1 − p̂i/pi

S2
MSR

]
. (2)

Here SMSR ≡ [∑
p̂2

i /pi − 1
]1/2

is the maximum possible Sharpe ratio, and
pi and p̂i are the true and risk-neutral probabilities of state i. Since the
Sharpe ratio is invariant to leverage, we are free to specify the portfolio’s
mean excess return,xMSR, at any level desired.

While the maximal-Sharpe-ratio (MSR) has a number of interesting
properties it is also true that one way to mitigate its impact on a fund’s
apparent performance is to sample returns more frequently. As one
does so the percentage difference between the market portfolio’s Sharpe
ratio and that of the MSR goes to zero. However, as will be seen below,
frequent sampling does not help when managers use dynamic manipulation
strategies.

1.2 Dynamic analysis of the Sharpe ratio
Calculated values of the Sharpe ratio and virtually all other performance
measures use statistics based on the assumption that the reported returns
are independent and identically distributed. While this may be a good
description of typical portfolio returns in an efficient market, it clearly can
be violated if a portfolio’s holdings are varied dynamically depending on
its performance.

Consider a money manager who has been lucky or unlucky with an
average realized return high or low relative to the portfolio’s realized
variance. To maximize the Sharpe ratio the portfolio can now be modified
to take into account the difference in the distributions between the realized
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and future expected returns, just as if the returns distribution was not ex
ante identically distributed each period. This dynamic manipulation makes
the past and future returns dependent when computed by an unconditional
measure.

To illustrate, suppose the manager has thus far achieved an historical
average excess return of xh with a standard deviation of σh. The portfolio’s
average excess return and standard deviation in the future are denoted by
xf and σf . Then its measured Sharpe ratio over the entire period will be
will be

S = γ xh + (1 − γ )xf√
γ (x2

h + σ 2
h) + (1 − γ )(x2

f + σ 2
f ) − [γ xh + (1 − γ )xf ]2

= γ xh + (1 − γ )xf√
γ x2

h(1 + 1/S2
h) + (1 − γ )x2

f (1 + 1/S2
f ) − [γ xh + (1 − γ )xf ]2

(3)

where γ is the fraction of the total time period that has already passed,
and Sh and Sf are the past and future Sharpe ratios.

By inspection, the overall Sharpe ratio is maximized by holding in the
future a portfolio that maximizes the future Sharpe ratio, Sf = SMSR.
However, regardless of what Sharpe ratio can be achieved in the future,
leverage is no longer irrelevant as it was in the static case. Maximizing
the Sharpe ratio in Equation (3), we see that the optimal leverage gives a
target mean excess return of

x∗
f =

{
xh(1 + S−2

h )/(1 + S−2
f ) for xh > 0

∞ for xh � 0.
(4)

If the manager has been lucky in the past and achieved a higher than
anticipated Sharpe ratio, Sh > Sf , then the portfolio should be targeted
in the future at a lower mean excess return (and lower variance) than it
has realized. This allows the past good fortune to weigh more heavily in
the overall measure.5 Conversely, if the manager has been unlucky and
Sh < Sf , then in the future, the portfolio should be targeted at a higher
mean excess return than that so far realized. In the extreme, if the average
excess return realized has been negative, then the manager should use as
much leverage as possible to minimize the impact of the poor history.

5 For a fixed Sharpe ratio, the overall mean is linear in the future leverage while the overall standard
deviation is convex. The proportional changes in the mean and standard deviation with respect to future
leverage are equal when the future and historical Sharpe ratios are equal. Therefore, when the historical
Sharpe ratio is less than the future Sharpe ratio, increasing leverage increases the overall mean at a faster
rate than the standard deviation and vice versa.
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Figure 1
Two-period Sharpe ratio optimization when the evaluator knows the portfolio’s overall mean and variance
The horizontal axis represents the portfolio’s historical Sharpe ratio during the time interval 0 to γ . After
seeing these results, the manager can then rebalance the portfolio to optimize the Sharpe ratio calculated
over the entire interval 0 to 1. The vertical axis displays the resulting expected Sharpe ratio from time 0 to
time 1.

The Sharpe ratio that can be achieved over the entire period is6

S =

⎧⎪⎪⎨⎪⎪⎩
√

S2
MSRS2

h + γ S2
h + (1 − γ )S2

MSR
1 + (1 − γ )S2

h
+ γS2

MSR
for Sh > 0

SMSR

√
1 − γ

1 + γ S2
MSR

for Sh � 0.

(5)

Figure 1 plots the overall Sharpe ratio as a function of the realized historical
Sharpe ratio for histories of different durations. The overall Sharpe ratio
can, on average, be maintained above (is forced below) the theoretical
maximum, SMSR, whenever the past performance has been good (bad).
The realized Sharpe ratio, of course, has the most impact when the past
history is long (γ ≈ 1).

As can be seen in the graph or from Equation (5), the over-all Sharpe
ratio is increasing and convex in the historical Sharpe ratio. Therefore,
dynamic-Sharpe-ratio-maximizing strategies should, on average, be able
to produce a Sharpe ratio higher than �MSR.7

6 Because the optimal future leverage is infinite when xh � 0 , the past Sharpe ratio does not affect the
overall Sharpe ratio, and the value of the overall Sharpe ratio for Sh < 0 is the same as forSh = 0.

7 Brown et al. (2004) provide evidence that some Australian money managers engage in a pattern of trading
consistent with the behavior described here.
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Simulations show that dynamic manipulation of the Sharpe ratio can
have a substantial effect. In a lognormal market with a risk premium
of 12%, a manager re-levering his portfolio after 30 months of a 5-year
evaluation period can achieve a Sharpe ratio of 0.714. This is 18% higher
than the static MSR (and 13% higher than the standard biased estimate of
the ratio). In addition, dynamic manipulation works in exactly the same
way for portfolios that have not been Sharpe optimized each period. Any
portfolio with a Sharpe ratio of �f can be levered as shown in Equation (4)
to achieve a higher average Sharpe ratio than this on average. For example,
in the same lognormal market, if the market is re-levered after 30 months,
its Sharpe ratio improves on average from 0.597 to 0.672, an increase of
13%.

In addition, we have assumed here that a single measurement period is
shorter than the time between rebalancings. If the portfolio manager can
alter his portfolio within a single measurement period, then the distribution
of a single return can be affected. For example, if a portfolio increases
sharply in value during the first part of a measurement period, switching to
a less aggressive position may make the ultimate measured return smaller
and keep the Sharpe ratio high. Goetzmann et al. (2000) analyze the
problem of performance measurement when the investment rebalancing
period is shorter than the measurement period.

Particular circumstances may permit additional opportunities to
manipulate the Sharpe ratio of a portfolio dynamically. Smoothing returns
over time will leave the portfolio’s mean return unchanged but decrease its
variance, so smoothing returns will increase the Sharpe ratio. Funds with
illiquid assets whose prices are only reported occasionally may benefit here.
Hedge funds or other portfolios with high-water mark performance fees
will also benefit. A standard performance contract calls for expensing the
performance fee monthly but paying it only annually, but unpaid fees can
be ‘‘lost’’ based on poor later fund performance. This contractual provision
automatically moves recorded returns from periods of good performance
to periods of poor performance thereby smoothing the reported returns
and increasing the Sharpe ratio.

1.3 Jensen’s alpha and related measures
Several benchmark performance measures are related to the Sharpe ratio.
The most familiar of these is Jensen’s alpha, which is the intercept of the
market model regression, xt = α + βxmt + εt . If the CAPM holds, this
intercept term should be zero when the regression is expressed in excess
return form.

Jensen’s alpha measures the marginal impact to the Sharpe ratio
of combining a small amount of an asset with the market portfolio.8

8 If asset i is combined with the market into a portfolio wxi + (1 − w)xmkt, then (∂S/∂w)|w=0 = αi/σmkt .
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Consequently, any portfolio with a Sharpe ratio in excess of the market’s
must have a positive alpha. In particular, the alphas of the maximal Sharpe
ratio portfolios described above are9

αMSR = xMSR(1 − S2
mkt/S

2
MSR) > 0 . (6)

Clearly, alpha is subject to severe manipulation. A MSRP can be created
with any desired leverage, so its alpha can in theory be made as large as
desired by levering.

The Treynor (1965) ratio and the Treynor appraisal ratio were
introduced in part to negate this leverage effect on alpha. The Treynor
measure is the ratio of alpha to beta10 while the appraisal measure is the
ratio of alpha to residual standard deviation. Like the Sharpe measure,
and unlike alpha, the two Treynor measures are unaffected by leverage.

Both Treynor measures indicate superior performance for the MSRP.
The MSRP’s two Treynor ratios are11

TMSR ≡ αMSR
βMSR

= (S2
MSR/S2

mkt − 1)xmkt > 0

AMSR ≡ αMSR√
Var[xMSR−βMSR·xmkt]

=
√

S2
MSR − S2

mkt > 0 .
(7)

Any MSRP has the largest possible Treynor appraisal ratio, but Treynor
ratios in excess of the MSRP’s can be achieved by forming portfolios with
positive alphas and betas close to zero.12

In addition, since the Sharpe ratio is subject to dynamic manipulation,
alpha and both Treynor measures are as well and can be increased above
these statically achieved values. The manipulation is illustrated in Figure 2.

9 The beta of the maximal-Sharpe-ratio portfolio, xMSR, is

βMSR ≡ Cov[xMSR, xmkt]
Var[xmkt]

= Cov[xMSR, xmkt]
Var[xMSR]

Var[xMSR]
Var[xmkt]

= xmkt
xMSR

Var[xMSR]
Var[xmkt]

= xMSR
xmkt

S2
mkt

S2
MSR

where Smkt is the Sharpe ratio of the market. The third equality follows since the MSRP is mean-variance
efficient by definition so xmkt = xMSR · Cov[xMSR, xmkt]/Var[xMSR].

10 Treynor (1965) original definition of his measure was rf − α/β ;however, α/β is now the commonly
accepted definition.

11 The Treynor ratio can be computed from the MSRP’s α in Equation (6) and its β in footnote 9. To
compute the Treynor appraisal ratio, we use α and

Var[xMSR − βMSRxmkt] = Var[xMSR] − 2βMSRCov[xMSR, xmkt] + β2
MSRVar[xmkt]

= Var[xMSR] − β2
MSRVar[xmkt] = x2

MSR

S2
MSR

−
(

xMSR
xmkt

S2
mkt

S2
MSR

)2
x2

mkt

S2
mkt

= x2
MSR

S2
MSR

(
1 −

S2
mkt

S2
MSR

)
.

12 A portfolio that shorts βMSR dollars in the market for every dollar in the MSRP will have a beta of zero
and a positive alpha. Therefore, its Treynor ratio will be +∞.
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Figure 2
Illustration of two-period alpha manipulation
The horizontal and vertical axes are the market’s and the portfolio’s excess returns. The portfolio is
originally fully invested in the market (i.e., with a market exposure of λ = 1). In the past, the market
return (◦) has been higher than expected. To manipulate alpha, the market exposure in the future should
be decreased to λ > 1 so future returns (•) will lie on a shallower line. The estimated market line using
all the data will have a slope between 1 and λ and a positive α. Conversely, if history had produced
below-average returns, the market exposure should be increased.

If returns have been above average, then decreasing the leverage in the
future will generate a market line with a positive alpha from all the
data for the portfolio. Not surprisingly, this is very similar to the dynamic
manipulation that produces a superior Sharpe ratio—leverage is decreased
(increased) after good (bad) returns.

Alpha-like measures can also be computed from models other than the
CAPM. Under quite general conditions, the generalized alpha of an asset
or portfolio in a single-period model is13

αgen
p = xp − Bpxm where Bp = Cov[u′(1 + rf + x̃m), x̃]

Cov[u′(1 + rf + x̃m), x̃m]
. (8)

Bp is a generalized measure of systematic risk, rf is the per-period (not-
annualized) interest rate, and u(·) is the utility function of the representative
investor holding the market. The systematic risk coefficient, Bp, can be
estimated by regressing x on xm using u′ (·) as an instrumental variable.
Ingersoll (1987) and Leland (1999) suggest using a power utility function

13 See Ingersoll (1987) for the derivation of this general measure of systematic risk.
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where

u′(1 + rf + xm) = (1 + rf + xm)−ρ with

ρ = �n[E(1 + rf + x̃m)] − �n(1 + rf )

Var[�n(1 + rf + x̃m)]
. (9)

This generalized alpha gives a correct measure of mispricing assuming that
the representative utility function is correctly matched to the market
portfolio; that is, if the market portfolio does maximize the utility
function employed. But this statement, tautological as it is, only applies
to single-period or static manipulation. Even if the utility is correctly
matched to the market, strategically rebalancing the portfolio over time
can give an apparent positive alpha due to the deviation between the
average and a properly conditioned expectation. The basic technique is
the same—decrease (increase) leverage after good (bad) returns.

Beyond the single-factor CAPM, there are several alpha-like perfor-
mance measures in use. These models augment the single factor CAPM
model with additional risk factors such as the Fama-French factors. How-
ever, within the simulations discussed in the next sub-section, no such
factors exist. The market returns are generated in an environment where
Equation (8) with αgen = 0 is the correct way to price. This single factor
model should do at least as well in the simulated environment as any model
with additional, but within the simulation, unpriced, factors. Similarly, if a
multifactor model were simulated, a multidimensional rebalancing of the
portfolio should produce positive alphas. For this reason, the Chen and
Knez (1996) measure and similar measures have not been examined.

1.4 Manipulating the Sharpe ratio and alpha with transactions costs
In practice, a manager can change a portfolio’s characteristics far more
frequently than once during the typical measurement period. On the other
hand, the costs of transacting may eliminate the apparent advantage
of many manipulation strategies. As we show below even very high
transactions costs cannot prevent managers from manipulating the Sharpe
ratio or other performance measures.

Determining the optimal dynamic manipulation strategies for all of the
popular performance measures is beyond the scope of our article. The
optimal manipulation strategy depends on the size of the transactions
costs, the complete set of returns to date within the evaluation period,
the distribution of future returns, and the number of periods remaining
in the evaluation period. However, for our purposes, an optimal strategy
is not necessary. We only want to establish whether reasonably simple
trading strategies can distort the existing measures even in the presence of
transactions costs, and if so, by how much.
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Table 1 shows the Sharpe ratio performance of a dynamically rebalanced
portfolio. The portfolio is invested only in the market; no derivatives are
used to alter the distribution. Only the leverage is changed over time.
Initially the portfolio is invested fully in the market. After the first year,
the portfolio is levered at the beginning of each month so that the target
mean is given by Equation (4); however, leverage is restricted so that the
market exposure is constrained between 50 and 150% of the portfolio’s
value. Levering is achieved by buying or selling synthetic forward contracts
consisting of a long position in calls and a short position in puts that are
at-the-money in present value, that is, the strike price per dollar invested
in the market is er/12. Trades in these two options are assessed a round-trip
transactions cost of 0, 10, or 20%. The simulation consisted of 10,000
repetitions.

On average the dynamically-manipulated portfolio’s Sharpe ratio is 13%
higher than the market’s and 7% higher than the static MSRP’s. In the
10,000 trials, the manipulated portfolio had a Sharpe ratio higher than the
market’s 82.6% of the time in the absence of transactions costs.14 Even
with a 20% round-trip transactions cost, the dynamically-manipulated
portfolio still beat the market almost three-quarters of the time.

The Sharpe-manipulated portfolio beats the market frequently, but is
it substantially better statistically; that is, is the difference in the Sharpe
ratios significant? In practice this question is seldom asked because Sharpe
ratios are at least as difficult to estimate precisely as are mean returns.15

However, differences between two portfolios’ Sharpe ratios can be more
precisely estimated than either of the individual ratios if the underlying
returns are correlated, as would generally be true and is certainly true in
our example. Statistical tests of portfolio returns generally assume that
the returns are independent and identically distributed over time. Such is
not the case here for the manipulated portfolio and this makes deriving
the distribution of the difference in the Sharpe ratios a difficult task.

14 The frequency with which one portfolio beats another must be interpreted with caution when the
winning portfolios hold derivatives. To illustrate, consider two portfolios that are almost identical. The
only difference is that the second portfolio sells deep out-of-the-money options (or similar rare payoff
derivatives). The proceeds are invested in bonds. Whenever the option expires out-of-the-money, the
second portfolio’s returns will be greater than the first portfolio’s returns. This will lead to a ‘‘better’’
outcome for the second portfolio by almost any performance measure. Since the payoff event can be made
as rare as desired, any portfolio, even an ex ante optimal one, can be beaten often. In our simulations
here only the leverage is changed so they are not subject to this problem. In addition, the appropriate null
hypothesis is not that the benchmark’s Sharpe ratio exceeds that of another portfolio half the time. If the
benchmark is more mean-variance efficient than the manipulated portfolio, its true Sharpe ratio will be
larger and, with symmetric measurement errors, its sample Sharpe should be greater more than 50% of
the time. This is in contrast to alpha, for which Prob{α > 0} = 50% is an appropriate null hypothesis.

15 Lo (2002) has shown that the asymptotic standard error of the Sharpe ratio of a portfolio with iid
returns over T periods is [(1 + S2)/T ]1/2 so the coefficient of determination is S−1[(1 + S2)/T ]1/2 . The
coefficient of determination for the mean return is σT −1/2x−1 = S−1T −1/2. The former is larger by a
factor of (1 + S2)1/2so the same difference in percentage terms is less significant for a Sharpe ratio than it
is for an average return.
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Furthermore, there is little point in such a derivation as our simulation is a
constructed example, and the statistic we derive would be applicable only
to that case.

Fortunately we do not need to know the distribution. Our simulations
give us a sample distribution of the differences, so we can easily determine
how often the difference is k standard deviations above or below zero.
For example, with no transactions costs, the difference between the
manipulated Sharpe ratio and the market Sharpe ratio was more than
1.65 standard deviations above zero 20.4% of the time. It was never more
than 1.65 standard deviations below zero. Were the difference normally
distributed, each of these should have occurred 5% of the time. Of course,
the differences between the Sharpe ratios is not normal, but this is still
evidence that a properly constructed test would conclude that the difference
was significant more often than chance would prescribe if the true expected
difference were zero. Table 1 gives the percentages of times that the Sharpe
ratio difference exceeds 1.65 standard deviations.

Using Jensen’s alpha or one of the Treynor measures to evaluate
performance gives even ‘‘better’’ results. The dynamic portfolio has an
average annualized alpha over 2% and the alpha is positive more than 92%
of the time in the absence of transactions costs. Even with 20% round-trip
costs, the average alpha is still 1.6% and is positive over 85% of the time.
The generalized alpha shows only slightly weaker performance for the
manipulated portfolio. In the simulations we had the benefit of knowing
the correct utility function, but superior performance as measured by the
generalized alpha is insensitive to the value assumed for the risk aversion
parameter. Similar superior performance was found for risk aversion
parameters throughout the range 2 to 4.

It is not surprising that the alphas can be manipulated more easily than
can the Sharpe ratios. The CAPM null hypothesis is that α = 0. With
measurement error, positive and negative deviations are approximately
equally likely. However, the CAPM null hypothesis on the Sharpe ratio is
that it is less than the market’s. The manipulation on the Sharpe ratio has
first to make up this difference before beating it.

2. Manipulating Other Measures

2.1 Reward-to-variability measures
Many other performance measures have been proposed over the years
to correct perceived flaws in the Sharpe ratio or to extend or modify its
measurement. Some of these measures use a benchmark portfolio—usually
some market index. All of them are subject to the same type of manipulation
that can be used on the Sharpe ratio. In this and the next sections we
examine many of the more popular alternatives.

Modigliani and Modigliani (1997) M-squared score is simply a
restatement of the Sharpe ratio. The M-squared measure is the expected
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excess return that would be earned on a portfolio if it were levered so
that its standard deviation was equal to that on the benchmark. Clearly
maximizing the Sharpe ratio also maximizes the M-squared measure
relative to any benchmark. Therefore, it is also subject to the same
manipulation.

Sharpe’s information ratio is another simple variation on the original
Sharpe ratio. The difference is that the excess returns are calculated relative
to a risky benchmark portfolio rather than the risk-free rate. If x and xb

are the excess returns on the portfolio and the benchmark, the information
ratio is

Sinfomation = x − xb√
Var(x̃ − x̃b)

. (10)

The information ratio is the primary measure in Roll (1992) tracking-
error (TEV) rating. Since excess returns are the returns on zero net cost
(or arbitrage) portfolios, they can be combined simply by adding them
together without any weighting. Clearly the arbitrage portfolio that is a
combination of the excess returns x̃ and x̃b has an information ratio with
respect to the benchmark, x̃b, numerically equal to the Sharpe ratio of x̃

alone; therefore, the information ratio is subject to the same manipulation
as the Sharpe ratio. In particular, adding the MSRP excess returns to
the market portfolio will achieve the highest possible information ratio
relative to the market.

One criticism commonly leveled against the Sharpe ratio is that very
high returns are penalized because they increase the standard deviation
more than the average. This is the reason the MSRP has bounded returns.
To overcome this problem, it has been suggested to measure risk using
only ‘‘bad’’ returns. In particular, Sortino and van der Meer (1991) and
others have measured risk as the root-mean-square deviation below some
minimum acceptable return. Sortino et al. (1999) have further suggested
that the ‘‘reward’’ in the numerator should only count ‘‘good’’ returns.
Sortino’s downside-risk and Sortino, van der Meer, and Plantinga’s (SVP)
upside-potential Sharpe-like measures are

D = E[x̃]

(E[Min2(x̃ − x, 0)])1/2
U = E[Max(x̃ − x, 0)]

(E[Min2(x̃ − x, 0)])1/2
. (11)

The minimal acceptable excess return, x , is commonly chosen to be zero.16

While these two measures do avoid the problem inherent in the Sharpe
ratio of penalizing very good outcomes, they do this too well so that

16 The minimum acceptable return is sometimes set to the portfolio’s average return for the Sortino measure.
This makes the denominator the semi-standard deviation. The average return should not be used like this
for the SVP measure as the ratio is then invariant to a uniform upward shift in the entire probability
distribution.
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the highest possible returns are sought in lieu of all others. As shown
in the Appendix, the Sortino downside-risk and SVP upside-potential
maximizing portfolios are very similar. They both hold the MSRP, an
extra very large investment in the state security for the state with the
highest market return (the lowest likelihood ratio p̂I /pI � p̂i/pi), and
bonds.

xMDR
i = x

D2
MDR

[
1 − (1 + S2

MSR)
pI

p̂I

]
+ S2

MSR

D2
MDR

pI

p̂I

xMSR
i i < I

xMDR
I = x

D2
MDR

[
1 − p̂I

pI

(1 − D2)

]

xMUP
i =

[
p̂I

pI

U 2 − (1 − p̂I )

]−1

S2
MSR[xMSR

i − x(1 + S2
MSR)] i < I

xMUP
I = x

pI

[
1 − pI (1 − p̂I )

p̂IU
2
MUP

]
(12)

where D2
MDR = 1 + p2

I

p̂2
I

I∑
i=1

p̂2
i /pi − 2pI

p̂I
and U 2

MUP = p2
I

p̂2
I

I−1∑
i=1

p̂2
i /pi . The

DMDR and UMUP are the largest possible Sortino downside-risk and
SVP upside-potential ratios.

Figure 3 illustrates the maximal Sortino and SVP ratio portfolios. The
1-month return on the market has a twenty-period binomial distribution
that approximates a lognormal market with a continuously-compounded
risk premium of 12% and a logarithmic volatility of σ = 20%.17 There
are twenty periods over the 1 month and twenty-one final states. Both
portfolios achieve a very high return in the best market outcome state and
have a negative excess return in all but this best state.18 The annualized
Sortino and SVP ratios of the market are 1.00 and 2.86. The scores for the
optimized Sortino ratio portfolio are over twice as high, at 2.83 and 6.04.
The same is true for the optimized SVP portfolio; it scores 2.76 and 6.17.

Clearly the maximal Sortino and SVP ratio portfolios are far from
optimal, and even a cursory examination of the period-by-period returns
would likely attract very negative attention. For example, both of these
portfolios have Sharpe ratios that are less than a tenth that of the market.
Conversely the MSRP has a Sortino and SVP ratio just a bit below that of
the market.

17 A binomial market environment is used as an illustration here because in a lognormal market or any
market with a continuous distribution, the maximal Sortino and SVP portfolios have an infinitesimal
negative excess return except in the highest return ‘‘state.’’ In this state, which occurs with zero probability
in a market with a continuum of states, the return is infinite.

18 For any choice of x, both portfolios have returns less than x in all but the best state.
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Figure 3
Comparison of Maximal Sortino and SVP ratio portfolios to the market portfolio
The x-axis is the market return. S, D, and U are the returns on maximal-Sharpe-ratio, maximal-downside-
risk-ratio (Sortino), and maximal-upside-potential-ratio (SVP) portfolios. The market environment is a
binomial model approximation to a lognormal market with a continuously compounded risk premium of
12% and a logarithmic volatility of σ = 20%. There are twenty periods over the 1 month.

The maximal-ratio strategies are also risky in a sampling sense. The best
market state is likely to have only a small probability of occurring, and
should it fail to occur during the evaluation period, the sample averages
and therefore the ratios would be negative even in a bull market. On the
other hand, should no below-x outcomes occur, both ratios would be
infinite. Of course, the maximal-ratio portfolios need not be employed to
manipulate the measures. The payoffs in Figure 2 indicate that a high ratio
can probably be achieved merely by purchasing calls—the further out-of-
the-money the better. For example, in our simulation environment, simply
investing the entire portfolio in at-the-money market index calls each
month has a Sortino ratio of 1.20 and a SVP ratio of 3.68—substantially
higher than the market’s. Using 10% out-of-the-money calls increases these
ratios to 1.79 and 5.10.

As with the Sharpe ratio, dynamic manipulation can also increase the
measure or increase the measure further when used along with static
manipulations. The following simple scheme can often achieve an infinite
ratio when the minimal acceptable excess return is zero (or negative). If
the first excess return is positive (which should be true more than one-half
of the time), then holding the risk-free asset for every other period will give
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a positive numerator and a denominator of zero resulting in an infinite
measure.

To illustrate the dynamic manipulation possibilities of these two mea-
sures even with very restricted portfolios, we employ simulations similar
to those used for the Sharpe ratio. If the historical returns up through time
t0 have an average excess return of xh and a Sortino measure of Dh, then
the portfolio’s measured Sortino ratio over the entire period will be

D = γ xh + (1 − γ )xf√
γ
∑

t<t0
Max2(−xt , 0) + (1 − γ )

∑
t>t0

Max2(−xt , 0)

= γ xh + (1 − γ )xf√
γ x2

hD
−2
h + (1 − γ )x2

f D−2
f

(13)

where the subscript f denotes future performance. As with the Sharpe
ratio, the overall Sortino ratio is maximized by maximizing the Sortino
ratio in the future and selecting the leverage so that

x∗
f =

{
xhD

2
f /D2

h f or xh > 0
∞ f or xh � 0.

(14)

Table 2 shows the Sortino and SVP ratio performance of a dynamically
rebalanced portfolio under the same conditions used for the Sharpe ratio.
Again no derivative assets, which could create static manipulation of the
ratios, were used to change the return distribution. The portfolio was fully
invested in the market, and each month after the 12th month, leverage was
changed using synthetic forwards to target the expected return as described
in Equation (14). Again the market exposure was constrained to the range
of 50 to 150% of the portfolio’s value. The manipulated portfolios produce
statistics that are superior to simply holding the market portfolio for both
modified measures as well as the Sharpe ratio.19

The Sortino ratio is higher than the market’s more than 82% of the time
even with 20% round-trip transactions costs. It is significantly higher at
the 5% confidence level almost 14% of the time.

The Sharpe and SVP ratios are also higher nearly three-quarters of the
time for this manipulation. The same manipulation produces good results
for all three ratios because each of the ratios has the same general dynamic
manipulation rule—decrease leverage after good luck (after the historical
score has been high).

19 The simulations also show that for a base lognormal distribution, the sample Sortino and SVP ratios are
almost certainly biased (like the Sharpe ratio for the MSRP and unlike (approximately) the Sharpe ratio
for the market). The true Sortino and SVP ratios for the market are 1.002 and 2.844. The sample averages
were 1.117 and 2.972 with standard errors of 0.00935 and 0.00831. So the sample averages were higher
than the true values by more than 12 and 15 standard errors, respectively.
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The best dynamic manipulation SVP ratio is almost the same. The
target in the future is proportional to the upside realization in the past and
the ratio of the squares of the expected and realized SVP measures, that
is, E[Max(x̃f , 0)] = Avg[Max(xh, 0)] × U 2

f /U 2
h . The simulation results for

the SVP measure manipulation are not presented here as they were very
similar. Understandably, this manipulation produces somewhat higher
average SVP ratios and beats the market’s SVP ratio more often while
producing somewhat lower Sortino ratios.

2.2 Henriksson-Merton and Treynor-Mazuy timing measures
The timing measures of Treynor and Mazuy (1966) and Henriksson and
Merton (1981) are bivariate regressions that use an extra market factor to
capture managers’ timing abilities (rather than to capture an additional
source of risk). The regressions used are

x̃t = γ 0 + γ 1m̃t + γ 2w̃t + ε̃t (15)

where x̃t and m̃t are the excess returns on the portfolio and the market
and w̃t is the variable used to capture timing ability. The timing variables
are w̃t ≡ Max(−m̃t , 0) and w̃t ≡ m̃2

t for HM and TM, respectively. The
HM model is consistent with a manager who chooses one of two amounts
of leverage for his portfolio depending on whether he forecasts that the
market return will exceed the risk-free rate or not. As shown by Admati
et al. (1986), the TM model is consistent with a manager whose target beta
varies linearly with his forecast for the expected market rate of return.

Unlike the measures we have already considered, performance here
is characterized by two numbers. In each case a positive γ 2 is an
indication of market timing ability and a positive γ 0 is considered a
sign of superior stock selection. However, as shown by Jagannathan and
Korajczyk (1986), simple trading strategies including or mimicking options
can produce positive γ 2s and negative γ 0s or vice versa.20 An unequivocal
demonstration of timing ability must, therefore, satisfy a joint test on the
two coefficients.

Merton (1981) has shown that the total contribution of the manager’s
timing and selectivity in the HM model is γ 0e−r�t + γ 2P (1, �t , er�t ) per
dollar invested where P (S, τ , K) is the value of a τ -period put option on
the market with a strike price of K. The intuition for this conclusion is that
a market timer who could forecast perfectly whether or not the market
return would exceed the interest rate and who adjusted his portfolio to be
fully invested in the market or bonds would essentially provide such a put
for free. In addition his selectivity ability would provide the present value

20 For example, buying (writing) calls produces a positive (negative) γ 2 and a negative (positive) γ 0. The
MSRP also has a negative γ 2 and a positive γ 0. It should be noted that due to the γ 2 term in these
regressions, γ 0 and γ 1 are not the standard Jensen’s alpha and CAPM beta.
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of γ 0 per dollar invested. The total contribution is the amount by which
the value of the protective put exceeds its average ‘‘cost’’ measured by the
lowered present value of the extra average return.

Similarly, under the TM model, the total contribution of the manager’s
investment ability per dollar invested is given by the same formula in which
the value of a derivative contract that pays the square of the market’s excess
return replaces the put’s value. This value is derived in Appendix D. The
total contributed value, V , of the money manager’s contribution to timing
and selectivity is

VHM = γ 0e
−r�t + γ 2P (1, �t, er�t )

VTM = γ 0e
−r�t + γ 2e

r�t (eσ 2�t − 1) .
(16)

Unfortunately with a complete market of derivative assets, the TM and
HM measures can be manipulated to any degree desired; that is, any
values for the γ s can be achieved with many different portfolios. The
minimum-variance portfolio that achieves any particular (positive) target
values for γ 0 and γ 2 will be long in the MSRP and the ‘‘timing’’ put
struck at-the-money in present value terms.21 It might be short or long in
the market and bonds depending on the targeted mean excess return and
market beta.

Figure 4 illustrates the payoffs on the minimum-variance zero-beta
portfolios with a timing target of γ 2 = 0.1 and a selectivity target of
γ 0 = 10 basis points per month. The environment is the same as before—a
lognormal market with a risk premium of 12% per year and a volatility
of 20%. The graph displays approximately the middle 95% of the return
distribution. The timing returns fluctuate from local extremes near plus
and minus 20% over the market range from −7 to +7%. In practice,
of course, only scattered points on the curves would be seen, and the
portfolio would probably be described as somewhat volatile but otherwise
‘‘normal.’’

Reexamining Figure 2 we see that the alpha-manipulating strategy
that decreases market exposure after good returns and increases market
exposure after poor returns has a general convex shape. This strategy will
likely produce a false positive timing performance. Simulations verify that
this is true; however, while γ 2 and the total contribution as measured
in Equation (16) are positive, simply changing the market exposure also
yields a (false) negative selection ability. Both γ 0 and γ 2 can be made
positive if a call position is written against the portfolio since this produces
an extra return when the market has a small return.

Table 3 shows the performance of a manipulated portfolio that holds
the market and writes a 10% out-of-the-money call on 2% of its holdings;

21 See section D of the Appendix for a proof. For the Treynor-Mazuy measure the portfolio needs to be long
in an exotic derivative contract paying the square of the market price rather than put options.
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Figure 4
Payoffs on ‘‘optimal’’ timing portfolios
The horizontal axis is the monthly excess market return. The two curves show the monthly excess
returns on the Treynor-Mazuy and Henriksson-Merton optimized portfolios with minimum-variance,
zero-beta, a selectivity coefficient of γ 0= 0.1%, and a timing coefficient of γ 2= 0.1 from the regression:
xt = γ 0 + γ 1mt + γ 2wt + εt . The market environment is a lognormal market with a continuously-
compounded risk premium of 12% and a logarithmic volatility of σ = 20%.

that is, the portfolio shares only 98% of the market returns above 10% in
any month. After 1 year, the leverage is changed every month so that the
market exposure is equal to 50% or 150% of the portfolio’s value if the
fraction of months in which the market’s return was more than average
was more or less than half, respectively. The resulting portfolio produces a
total contributed value of around 98 to 156 basis points per year depending
on transactions costs as measured by either HM or TM. Our simulations
show that the total contributed value was positive about 65 to 70% of the
time and significantly so (at the 5% level) 9 to 14% of the time. The results
are not as strong as for the other measures, but this is not surprising. The
HM and TM measures are timing measures specifically designed for timing
ability and should be able to better reject our dynamic manipulations than
the other measures discussed so far.

The components of performance, selectivity and timing, do not have
as strong an individual showing because the simulation was designed to
produce over all good performance and the two measures are negatively
correlated. Increasing the out-of-the-money call sales, for example, would
increase γ 0 and decrease γ 2. However, each component is positive more
than half of the time and significantly so more often than chance would
allow.
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3. Manipulation-proof Performance Measures

In the preceding sections of this article, we have established that popular
measures of performance are susceptible to manipulation even when
transactions costs are high. We have shown that manipulation requires no
superior information and little technical sophistication. Simple schemes
like trading puts and calls or simply altering a portfolio’s leverage can
often create performance that looks superior. Furthermore, even if money
managers are not seeking to manipulate their performance numbers,
competitive evolution may favor those managers whose strategies happen
to look like our manipulation strategies if these measures are widely
used. We have shown that these problems can be of concern even when
evaluating well-diversified portfolios of equities, but increasingly money is
being invested in hedge funds and other venues whose return distributions
differ substantially from those historically found in all-equity funds. For
such funds even more problems may arise.

All of the above issues can be avoided with a manipulation-free measure.
But what does it mean for a measure to be manipulation-free? What
exactly should it encourage a manager to do or not do? Intuitively, if
a manager has no private information and markets are efficient, then
holding some benchmark portfolio, possibly levered, should maximize the
measure’s expected value. The benchmark might be the market, but in some
contexts other benchmarks could be appropriate. Static manipulation is
the tilting of the portfolio away from the (levered) benchmark even when
there is no informational reason to do so. Dynamic manipulation is
altering the portfolio over time based on past performance rather than
on new information. Our goal is to characterize a measure that punishes
uninformed manipulation of both types.

Formally a performance measure is a function of the portfolio’s
probability distribution across the outcome states. That is, if r is the vector
of returns across all the possible outcomes, then the performance measure
is a real-valued function, �(r), of those returns.22 In practice, of course,
we do not know the true distribution, and the estimated performance
measure must be a function of the returns realized over time. We will
denote the estimated performance measure as �̂(〈rt , st 〉Tt=1).

23 Each time

22 In principle, a performance measure could be a pair or more of numbers (like γ 0 and γ 2 in the TM and
HM models or mean and variance). In general, of course, such performance measures would not provide
a complete ranking of portfolios. In one sense multivalued performance measures would be harder to
manipulate since they would provide more information. In another more practical sense, multivalued
performance measures would be easier to manipulate since without a complete ranking there would be
more portfolios that the market benchmark did not beat. We confine our attention to single-valued
performance measures like the Sharpe ratio.

23 Using the time series of returns in the estimated performance measure �̂ to represent the true performance
measure assumes that the realizations of portfolio returns (and states) are sufficiently independent and
identically distributed over time so that the frequencies will be equal to the ex ante probabilities in a
sufficiently large sample.
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period and its return (rt ) can, but need not, be identified with the state (st )

that occurred. For example, estimating the Sharpe ratio requires knowing
only the returns while to estimate Jensen’s alpha we need to know the
contemporaneous market return for each return.

One property that any MPPM must have is that it recognizes arbitrage
opportunities as good. If the portfolio-return distribution r1 dominates the
portfolio return distribution r2, then the performance measure must rank
it higher,�(r1) > �(r2). This same property should hold for the estimated
performance measure, though the dominance in this case may only be
apparent as not all states may have been realized. We already know that
the Sharpe ratio fails this simple test—if the returns in one or more states
are increased sufficiently, the ratio will decrease even though the return
distribution unequivocally improves based on the observed evidence.

However, this property, while necessary, is not sufficient to make
a measure manipulation-proof. To have a performance measure that
is proof against dynamic manipulation the function must have a strong
independence property. This requires that altering some of the components
does not affect the relative ranking based on other components. A
performance measure cannot be dynamically manipulated only if the
relative rankings of different futures are unaffected by the particular
history that has occurred.24 Note that this does not say that the history
does not affect rankings; it does say that different potential futures can be
compared independently of the past.

This independence property is known from utility theory where
it is called (strong) utility independence or strong utility separation.
Furthermore, a ranking (i.e., ordinal) function has this independence
property if and only if it has an additive representation.25

That is, the only possible MPPMs can be expressed as

�̂(〈rt , st 〉Tt=1) = ϒ

(
1
T

T∑
t=1

θt (rt , st )

)
. (17)

The function ϒ(·) is any increasing function and is irrelevant for ranking;
therefore, it can be taken to be the identity function except when otherwise
more convenient. We choose to write the argument as an average rather
than a simple sum because most performance measures are based on some
kind of average. Each function θ t must be increasing if �̂ is to satisfy the
‘‘arbitrage is good’’ criterion.

24 Precisely, the measure is proof against dynamic manipulation only if �̂(〈r0
t 〉τ1 , 〈r ′

t 〉T
τ+1) >

�̂(〈r0
t 〉τ1 , 〈r ′′

t 〉T
τ+1) implies �̂(〈rt 〉τ1 , 〈r ′

t 〉T
τ+1) > �̂(〈rt 〉τ1 , 〈r ′′

t 〉T
τ+1) for any history 〈rt 〉τ1 . This independence

property must also hold for all conditioning subsets.
25 See, for example, Debreu (1960).
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Most performance measures treat each time period identically, apart
from any possible state dependence. In this case, all θt ’s are the same and
any MPPM must be equivalent to a simple average of some, possibly state-
dependent, function of returns.26 Some simple performance measures that
cannot be dynamically manipulated are the average return, θ(rt ) = rt; the
average market-adjusted return, θ(rt , st ) = rt − mt(st );27 and the geometric
average return, θ(rt ) = �n (1 + rt ).

Any function θ will create a performance measure, �, that is proof
against dynamic manipulation. To prevent static manipulation, θ must
be strictly increasing, as previously noted, and also concave; otherwise
simply adding unpriced risk to a portfolio could increase its measured
performance. Concavity is a natural property to demand since it is also
necessary (and sufficient) if we want to rate as better the less risky (in a
Rothschild–Stiglitz sense) of two portfolios with the same average return.

Since any measure with θ t an increasing, concave function of the return
is a MPPM, it might seem that we have simply rediscovered the von
Neumann Morgenstern utility functions. But this is not the case—the
set of MPPMs overlaps the set of von Neumann Morgenstern utility
functions only for a power form. The necessity of the power form comes
from the use of the returns at different times to proxy for the returns in
different outcome states. Even if we consider θ to be a utility function, the
formula in Equation (17) is not an average (proxying for an expectation)
achieved level of utility. It is instead a time-series average of assessment
of the increase in utility. This means that while the measure cannot
be manipulated, some choices of �̂ will rank higher portfolios that are
stochastically dominated.

Consider the simplest case of selecting a portfolio over a T -period
horizon when returns are independent and identically distributed. Any
portfolio that is not first-order stochastically dominated must maximize
the expectation of u(

∏
(1 + rt )) = u

[
exp

(∑
�n (1 + rt )

)]
for some strictly

increasing function u. If we want the MPPM to select a stochastically
nondominated portfolio, we must then have

u
[
exp

(∑
�n(1 + rt )

)]
= ϒ

(
1
T

∑
θt (rt )

)
⇒

∑
�n(1 + rt ) = ϒ ′

(
1
T

∑
θ ′

t [�n(1 + rt )]
)

(18)

26 An identical treatment of each period’s return is not a requirement for the measure to be manipulation-
proof. For example, the time-dependent average θt (rt ) = δT −t rt , which puts extra emphasis on recent
returns, could be used.

27 Note that, as already shown, Jensen’s alpha, θ(rt , st ) = rt − βmt (st ), is not manipulation-proof. The
problem with alpha is that beta must be estimated and the estimated value of beta can be easily
manipulated. Any fixed (data-independent) value of β could be used in an MPPM, but these would not,
of course, be Jensen’s alpha.
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where θ ′
t (x) ≡ θ t (e

x − 1) and ϒ ′(x) = �n(u−1[ϒ(x)]). But this second
equality can be true only if θ ′

t and ϒ ′ are linear functions or, equivalently,
only if θ is of the power form, θ(r) = (1 + r)δ.

The specific MPPM we propose here is

�̂ = 1
(1 − ρ)�t

�n

(
1
T

T∑
t=1

[(1 + rt )/(1 + rf t )]1−ρ

)
(19)

where rf t and rt are the per-period (not annualized) interest rate and
the rate of return on the portfolio over period t . We have transformed
the measure so that �̂ can be interpreted as the annualized continuously
compounded excess return certainty equivalent of the portfolio. That is,
a risk-free portfolio earning exp[�n (1 + rf t ) + �̂�t ] each period would
have a measured performance of �̂.

Finally, we want to associate the MPPM with some benchmark portfolio.
This would typically be some market index. In the absence of any private
information, we want the MPPM to score the chosen benchmark highly. If
the benchmark portfolio has a lognormal return, 1 + rb, then the parameter
ρ should be selected so that

ρ = �n[E(1 + r̃b)] − �n(1 + rf )

Var[�n(1 + r̃b)]
. (20)

Historically this number is around 2 to 4 for the CRSP value-weighted
market portfolio depending on the time period and frequency of data used.
We have used a relative risk aversion of three in our simulations.

It is interesting to note that the measure proposed here is identical
in substance and nearly in form to the Morningstar Risk Adjusted
Rating (Morningstar, 2006) which was introduced in July, 2002.28

The Morningstar ranking is motivated directly as a representative
utility function rather than from the manipulation-proof properties we
addressed. The manipulation-proof feature of the measure is an apparently
unintended and evidently unrecognized consequence of the functional form
Morningstar adopted to evaluate funds. Its performance relative to other
ranking measures was analyzed in Stutzer (2005).

Table 4 shows the performance for our manipulated portfolios in our
previous simulations. The MPPMs are determined for three different risk

28 Additional information in this paragraph is based on personal communication with Paul Kaplan. In the
notation of Equation (19), the Morningstar rating is

MRAR(γ ) =
[
(1/T )

∑
[(1 + rt )/(1 + rf t )]

−γ
]−1/γ ·�t − 1

so �̂ ≡ �n [1 + MRAR(ρ − 1)]. Morningstar uses γ = 2 (ρ = 3) and monthly returns (�t = 1/12) in their
ratings.
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aversions, 2, 3, and 4.29 The simulation was constructed with a market
portfolio in which the risk aversion was 3, so the numbers in that column
are correct. In practice we would not know the correct risk aversion to use
so the other MPPMs are given to check the sensitivity.

The computed MPPMs show correctly that the manipulated portfolios
are not as good as the market.30 For example, the Sharpe-manipulated
portfolio had a Sharpe ratio exceeding the market’s 82.6% of the time
and was significantly larger 20.4% of the time at the 5% confidence level.
On the other hand, the MPPM measure shows that this portfolio beat
the market only 46.3% of the time and was significantly (5% confidence)
better only 0.4% of the time. Conversely it significantly underperformed
the market 9.6% of the time as measured by the MPPM but only 1.4% of
the time as measured by the Sharpe ratio. The average performance was
96 basis points below the market on a certainty equivalent basis.

The other portfolios show similar results. Their underperformances
range from 87 to 126 basis points and they never beat the market more
than 50% of the time. They significantly underperform the market more
than 9% of the time and outperform it from 0.4 to 2.4% of the time. The
results are similar for MPPMs computed assuming risk aversions of 2 or
4.

Of course, as well as penalizing poor performance, we would like an
MPPM to recognize good performance when it occurs. Tables 5 and 6
show the performance of money managers who try to provide stock
selection and market timing, respectively.

Table 5 compares the annualized Sharpe ratio, alpha, and MPPM for
informed and uninformed money managers. The informed money manager
can provide an annual alpha of 1% at the cost of holding a portfolio with
undiversified risk. The three panels show portfolios with annual residual
risks of 20, 2, and 0.2%.31 These are portfolios of approximately one, one
hundred, and ten thousand component stocks. The uniformed manager
holds similar under-diversified portfolios but has an alpha of zero and does
not engage in any manipulation. The table shows the average, standard
deviation, and frequencies for the difference between the portfolio’s and
market’s Sharpe ratios, alphas, and MPPMs.

29 The range of relative risk aversions in the market might be much wider than 2 to 4; however, this range is
meant to capture the range of risk aversions that would be relevant for the construction of mutual funds
or other well diversified portfolios. Relative risk aversions of 2 to 4 correspond to portfolios that would
range from leveraged positions of 1.5 down to 0.75. This should encompass most portfolios that would be
ranked.

30 Only the zero-transactions-cost cases are reported. With transactions costs, the MPPM scores would be
even lower.

31 The logarithmic market return over a period of length �t is [μ + α − 1
2 (σ2+υ2)]�t+(σ ε̃+υη̃)

√
�t where ε̃

and η̃ are standard normal variables. The market’s expected rate of return and log variance per unit time
are μ and σ2, respectively. The informed trader provides an α of 1% at a cost of a residual variation of υ

of 20, 2, or 0.2%. The uninformed trader has the same residual variation with an α of zero.
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Table 5
The manipulation-proof performance measure

Informed trader (α = 1%) Uninformed trader (α = 0%)

Freq Freq Freq Freq Freq Freq
Residual Avg Stand won signif signif Avg Stand won signif signif
risk excess dev (%) + (%) − (%) excess dev (%) + (%) − (%)

Annual logarithmic residual standard deviation = 20%
Sharpe −0.142 0.350 34.0 2.0 10.5 −0.183 0.349 30.5 1.6 12.6
Alpha 1.01% 9.15% 56.0 6.9 3.6 −0.01% 9.15% 48.9 4.9 4.6
MPPM −4.82% 9.02% 29.2 1.4 13.4 −5.90% 9.12% 25.8 1.1 15.4

Annual logarithmic residual standard deviation = 2%
Sharpe 0.048 0.045 85.0 25.6 0.4 −0.004 0.046 47.1 4.5 5.4
Alpha 1.00% 0.93% 90.5 36.5 0.2 −0.00% 0.93% 49.0 4.8 4.8
MPPM 0.95% 0.90% 85.3 27.1 0.4 −0.06% 0.91% 47.7 4.4 5.6

Annual logarithmic residual standard deviation = 0.2%
Sharpe 0.048 0.006 100 100 0.0 −0.000 0.005 49.6 5.1 4.8
Alpha 1.00% 0.18% 100 100 0.0 −0.00% 0.18% 49.0 5.1 4.7
MPPM 1.00% 0.09% 100 100 0.0 −0.00% 0.09% 49.8 5.1 5.0

The table compares the manipulation-proof performance measure to the Sharpe ratio and alpha for
an informed trader who can create a portfolio with a positive alpha by taking on various levels of
increased unsystematic risk.
The difference between the portfolio’s and market’s Sharpe ratios and the portfolio’s alpha and
MPPM, �, are reported. The frequencies with which the portfolio beat the market according to
each are given along with the approximate frequencies with which the portfolio significantly (5%)
outperformed or underperformed the market. The latter numbers are estimated as the frequency
with which the measure was more than 1.65 standard deviations positive or negative.

The MPPM is defined in Equation (19) as �̂ ≡ �n
(

1
T

∑
[(1+rf t )

−1(1+rf t +xt )]1−ρ
)
(1 − ρ)�t .

The market parameters are: risk free rate 5% per annum, market premium 12%, market standard
deviation 20%. This is consistent with a risk aversion of ρ = 3.

The portfolio alphas are just as expected. They average 1% and 0% for
the informed and uninformed managers. For the uninformed manager,
they are significantly positive or negative just about the predicted 5% of the
time. For the informed manager they are significantly positive (negative)
more (less) than 5% of the time regardless of the diversification—again as
expected since alpha does not penalize for under-diversification.

For 10,000 stock portfolios all three of the measures show that the
informed manager’s portfolio is better than the market and the uninformed
manager’s portfolio is essentially identical to the market. For one hundred
stock portfolios, the MPPM and Sharpe have almost the same results
though the MPPM does marginally better at recognizing both informed
and uninformed managers. For single-stock portfolios, the MPPM does
substantially better at illustrating that the 1% alpha does not properly
compensate for the lack of diversification.

Table 6 compares the MPPM and Henriksson-Merton and Treynor-
Mazuy timing measures for an informed and uninformed market timer.
The informed market timer knows that a time varying mean explains a
portion of the observed market variance. In the two panels, the informed
trader’s information explains 0.1% and 1% of the market’s variation,
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Table 6
The manipulation-proof performance measure

Informed timer (0.1%) Random timer

Freq Freq Freq Freq Freq Freq
won signif signif won signif signif

Avg St dev (%) + (%) − (%) Avg St dev (%) + (%) − (%)

HM γ 2 0.052 0.185 61.5 8.6 2.7 −0.002 0.187 49.3 4.8 4.8
HM V 0.07% 0.20% 63.2 8.9 2.4 0.001% 0.203% 50.0 5.0 5.1
TM γ 2 0.208 0.865 60.2 7.8 2.9 −0.013 0.870 49.2 4.9 5.0
TM V 0.07% 0.20% 62.9 9.0 2.5 0.001% 0.207% 50.1 5.0 5.0
MPPM � 0.40% 2.35% 57.2 6.8 3.4 −6.42% 9.23% 24.2 0.9 16.9

Informed timer (1%) Random timer

Freq Freq Freq Freq Freq Freq
won signif signif won signif signif

Avg St dev (%) + (%) − (%) Avg St dev (%) + (%) − (%)

HM γ 2 0.512 0.591 81.3 21.4 0.7 −0.003 0.598 49.7 5.0 5.1
HM V 0.68% 0.64% 85.8 27.0 0.4 −0.01% 0.65% 49.1 4.8 4.9
TM γ 2 2.037 2.747 77.8 17.9 1.0 −0.004 2.78 49.9 4.9 5.0
TM V 0.69% 0.66% 85.8 26.8 0.4 −0.01% 0.67% 49.3 4.7 4.9
MPPM � 4.20% 7.53% 71.8 13.2 1.7 −10.5% 12.2% 18.9 0.5 20.8

The table compares the manipulation-proof performance measure (MPPM) to the Henriksson-
Merton and Treynor-Mazuy timing measures for an informed market timer, whose information
about a changing mean explains 0.1% or 1% of the market’s variance, and an uninformed market
timer who varies leverage randomly to the same degree. The average timing coefficient, γ 2 as defined
in Equation (15), and the average contributed value, V as defined in Equation (16), are reported
along with the MPPM, �. The frequencies with which the portfolio beat the market according to the
three are given along with the approximate frequencies with which the portfolio significantly (5%)
outperformed or underperformed the market. The latter numbers are estimated as the frequency
with which the measure was more than 1.65 standard deviations positive or negative.

The MPPM is defined in Equation (19) as �̂ ≡ �n
(

1
T

∑
[(1+rf t )

−1(1+rf t +xt )]1−ρ
)
(1 − ρ)�t .

The market parameters are: risk free rate 5% per annum, market premium 12%, market standard
deviation 20%. This is consistent with a risk aversion of ρ = 3.

and he adjusts his leverage optimally.32 The uninformed trader believes
incorrectly that he has similar quality information, so he adjusts his
leverage to the same degree, but does so randomly relative to actual
outcomes.

The table shows the average, standard deviation, and frequencies for
the timing coefficients, γ 2, and the total contributed value (as given in
Equation (16)) and the difference between the portfolio’s and market’s
MPPMs. The HM and TM models are designed to recognize informed

32 The logarithmic market return over a period of length �t is (μ + s̃ − 1
2 σ2)�t+σ

√
(1−δ2)�t ε̃ ,where ε̃ is a

standard normal variable. The market’s unconditional expected rate of return and logarithmic variance
per unit time are μ and σ2, respectively. The information about the changing mean is in the signal, s̃,
which is normally distributed with mean zero and variance δ2σ2�t where δ is the fraction of variation
known to the informed trader. In the simulations, δ is set to 0.1% and 1%. The optimal market holding
conditional on a signal, s, is equal to the conditional risk premium divided by the relative risk aversion
times the conditional variance, (μ + s − r)ρ(1 − δ2)σ2. Since the unconditional risk premium is equal to
the relative risk aversion times the unconditional variance, the optimal leverage conditional on a signal s

is (1 + s/ρσ2)(1 − δ2).
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timing, but not to penalize uninformed timing. Thus, they show results
consistent with the null hypothesis for the uninformed timer just as they
would for a manager not trying to time at all. The MPPM, on the
other hand, shows that the uninformed timer is definitely hurting the
portfolio’s performance, and that the uninformed timer who thinks he has
better information hurts the portfolio more. The HM and TM measures
recognize the informed trader more frequently because, unlike the MPPM,
they do not penalize the portfolio’s performance for the induced lack of
complete intertemporal diversification.

4. Conclusion

Portfolio performance measurement has been a topic of interest within both
the practitioner and academic communities for a long time. However, a
reasonable concern among those that use a particular measure is whether or
not the manager being evaluated might react by attempting to manipulate
it. Several articles have noted that even when the evaluator knows the
moments of the return distribution it is still possible to use informationless
trades to boost the expected Sharpe ratio.

What has not been recognized is that because any performance measure
must be estimated a fund manager can potentially game the estimation
procedure as well. As this article shows, a manager that seeks to manipulate
many of the more popular measures can indeed produce very impressive
performance statistics. For example, a simple rebalancing strategy can yield
a market beating Jensen’s alpha 86% of the time even when transactions
costs are set at an unrealistically high 20% of each dollar traded. These
statistics, however, are fraudulent in that they are produced entirely
without private information. Indeed, most investors would probably prefer
to hold the market index rather than the portfolios that manipulate the
various measures tested in this article.

If the current set of measures can be manipulated, can one then find a
measure that cannot be and is simultaneously of some value to investors?
This article has shown that indeed such a measure exists. MPPMs can
be completely characterized (up to a monotonic transformation) as the
weighted average of a utility-like function. Not only is it manipulation-
proof but it is no more difficult to calculate than the Sharpe ratio, and
considerably easier to calculate than many of the other performance
measures that have been proposed in the past to remedy the Sharpe ratio’s
shortcomings.
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Appendices

A: The Maximal-Sharpe-Ratio Portfolio in a Complete Market

Consider a portfolio with excess return xi in state i. The probability of state i is pi . The
Sharpe ratio of this portfolio is

S = � pixi√
� pix

2
i − (� pixi )2

(A1)

This ratio is invariant to scaling so when maximizing it, we can fix the expected excess return
at any positive value,�pixi = x > 0 ,with no loss of generality. Then maximizing the Sharpe
ratio is equivalent to minimizing the mean squared return subject to an expected return of x

with a cost of zero.
Form the Lagrangian33

L = 1
2

∑
pi x

2
i
+λ(x−∑

pi xi )+γ (0−∑
p̂i xi ) (A2)

The first-order conditions for a minimum are

0 = ∂L

∂xi

= pix
∗
i − λpi + γ p̂i 0 = ∂L

∂λ
= x −

∑
pixi 0 = ∂L

∂γ
= −

∑
p̂ixi (A3)

The second-order condition for an interior minimum is also met.
Solving the first equation in (A3) gives the MSRP excess return in state i as

x∗
i = λ + γ p̂i/pi . (A4)

To determine the Lagrange multipliers, multiply Equation (A4) by pi and p̂i and sum over
states. Recognizing that �pi = �p̂i = 1 , gives

x =
∑

pix
∗
i = λ

∑
pi + γ

∑
p̂i = λ + γ

0 =
∑

p̂ix
∗
i = λ

∑
p̂i + γ

∑
p̂2

i /pi = λ + γ
∑

p̂2
i /pi (A5)

These equations can be solved to determine the multipliers’ values

γ = −x

� p̂2
i /pi − 1

λ = x − γ (A6)

So the MSR portfolio is

x∗
i = x + γ (p̂i/pi − 1) . (A7)

33 The zero-net-wealth budget constraint is expressed here using the risk-neutral probabilities in place of the
state prices. Since the state price is e−rT p̂i ,a portfolio with a risk-neutral expected excess return of zero
has a zero cost.
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The variance of the maximal-Sharpe ratio portfolio and the square of its Sharpe ratio are

σ 2
x =

∑
p(x∗

i − x)2 =
∑

piγ
2(p̂i/pi − 1)2 = γ 2

[∑
p̂2

i /pi − 2
∑

p̂i +
∑

pi

]
= γ 2

[∑
p̂2

i /pi − 1
]

= x2
[∑

p̂2
i /pi − 1

]−1
(A8)

S2
MSR = x2

σ 2
x

=
∑

p̂2
i /pi − 1 . (A9)

The maximal Sharp ratio portfolio is therefore

x∗
i = x + xS−2

MSR(1 − p̂i/pi) with SMSR =
[∑

p̂2
i /pi − 1

]1/2
(A10)

The sum in Equation (A9) can be expressed as �pi(p̂i/pi)
2 = E[p̂2/p2], so the square of the

maximal Sharpe ratio is one less than the expectation of the square of the realized probability
likelihood ratio.

B: Sortino (Downside Risk) and Sortino, Van der Meer, and Plantinga
(Upside Potential) Measures

The Sortino and van der Meer (1991) downside risk measure and Sortino et al. (1999) upside
potential measure both compute the risk term in the denominator by considering only excess
returns below some minimum acceptable return, x. The upside potential measure also only
counts returns above this in the numerator. The two measures are

D = E[x]

(E[Min2(xi − x, 0)])1/2
U = E[Max(xi − x, 0)]

(E[Min2(xi − x, 0)])1/2
. (B1)

The usual choice forx is zero. In this case both ratios, like the Sharpe ratio, are invariant to
leverage.34 This is the choice we use in this article.

The Sortino downside-risk measure
For x = 0, the Sortino measure can be maximized exactly like the Sharpe ratio by fixing
the mean excess return and minimizing the risk measure in the denominator. Forming the
Lagrangian

L = 1
2

∑
piMin2(xi , 0) + λ

(
x −

∑
pixi

)
+ γ

(
0 −

∑
p̂ixi

)
(B2)

and differentiating gives the first-order conditions as

0 = ∂L

∂xi

= piMin(xi , 0) − λpi + γ p̂i 0 = ∂L

∂λ
= x −

∑
pixi 0 = ∂L

∂γ
= −

∑
p̂ixi

(B3)

The second-order condition for an interior minimum is also met.
Note that the first condition in Equation (B3) is independent of xi when xi > 0; therefore,

it can be satisfied only if just a single state has a positive excess return (or two or more

34 The measures are also invariant to leverage if x is set proportional to the average return. If it is equal to
the mean return, the denominator of each measure is the semi-standard deviation, and this is sometimes
done for the Sortino ratio. This is a poor choice for the SVP upside measure, though, as U is then invariant
to a uniform upward shift in the entire portfolio distribution.
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states with the same likelihood ratio have the same positive excess return). The state with a
positive excess return must be that state with the smallest likelihood ratio, p̂i/pi . Since the
likelihood ratio is inversely proportional to the marginal utility in a state, the single state
with the positive excess return is the state with the highest market return—denoted as state
I . Using the first order conditions to solve for the Lagrange multipliers and the return in the
highest return state, xI , gives

x =
I∑

i=1

pixi = pIxi + λ

I−1∑
i=1

pi + γ

I−1∑
i=1

p̂i = pI xI + λ(1 − pI ) + γ (1 − p̂I )

0 =
I∑

i=1

p̂ixi = p̂I xI + λ

I−1∑
i=1

p̂i + γ

I−1∑
i=1

p̂2
i /pi = pI xI + λ(1 − p̂I ) + γ

I−1∑
i=1

p̂2
i /pi (B4)

0 = −λpI − γ p̂I .

Solving these three equations for λ, γ , and xMDR
I , and substituting back into the first

equation in (B3) gives the down-side risk maximizing portfolio

xMDR
i = γ (p̂I /pI − p̂i/pi) i < I xMDR

I = γ
[
p̂I /pI −

∑
p̂2

i /pi

]
/p̂I (B5)

where γ ≡ x
[
2 − p̂I /pI − (pI /p̂I )

∑
p̂2

i /pi

]−1
. The square of the minimized downside risk

in the denominator is

E[Min2(x̃, 0)] =
I−1∑
i=1

pix
2
i =

I−1∑
i=1

pi(λ + γ p̂i/pi)
2 = λ2

I−1∑
i=1

pi + 2λγ

I−1∑
i=1

p̂i + γ 2
I−1∑
i=1

p̂2
i /pi

= γ 2 p̂2
I

p2
I

(1 − pI ) − 2γ 2 p̂I

pI

(1 − p̂I ) + γ 2
I−1∑
i=1

p̂2
i /pi = γ 2

[
p̂2

I

p2
I

− 2
p̂I

pI

+
I∑

i=1

p̂2
i /pi

]
(B6)

= x2 p̂I

pI

[
p̂I

pI

− 2 + pI

p̂I

I∑
i=1

p̂2
i /pi

]−1

.

So the maximized squared Sortino downside risk measure is

D2
MDR = x2

E[Min2(x̃, 0)]
= 1 + p2

I

p̂2
I

I∑
i=1

p̂2
i /pi − 2

pI

p̂I

. (B7)

The Sortino, van der Meer, and Plantinga (upside potential) measures
Maximizing the upside potential measure is very similar. Again if the minimal acceptable
return, x ,is zero the SVP upside-potential measure is invariant to leverage so to maximize
it, we can fix the numerator, E[Max(xi , 0)] , and minimize the square of the denominator,
E[Min2(x̃, 0)] . We form the Lagrangian and optimize

L ≡ 1
2

∑
piMin2(xi , 0) + λ

[
N −

∑
piMax(xi , 0)

]
+ γ

(
0 −

∑
p̂ixi

)
0 = ∂L

∂xi

=
{

pixi − γ p̂i f or xi < 0
−λpi − γ p̂i f or xi > 0 .

(B8)

As with the maximized Sortino measure only one state can have a positive excess return, and
it must be the state with the lowest likelihood ratio and the highest market return.
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Using the first order conditions to solve for the Lagrange multiplier and the return in the
highest return state, xMUP

I , gives

0 =
I∑

i=1

p̂ix
MUP
i = p̂I x

MUP
I + γ

I−1∑
i=1

p̂2
i /pi

⇒ γ = −p̂I xI

[
I−1∑
i=1

p̂2
i /pi

]−1

= −N
p̂I

pI

[
I−1∑
i=1

p̂2
i /pi

]−1

. (B9)

The denominator of the squared SVP ratio is

E[Min2(x̃, 0)] =
I−1∑
i=1

pix
2
i = γ 2

I−1∑
i=1

pi(p̂i/pi)
2 = N2 p̂2

I

p2
I

[
I−1∑
i=1

p̂2
i /pi

]−1

, (B10)

and the squared ratio itself is

U 2 = N2

E[Min2(x̃, 0)]
= p2

I

p̂2
I

I−1∑
i=1

p̂2
i /pi . (B11)

For comparison purposes, it is better to express results in terms of the mean excess return
rather than the numerator using

x =
I∑

i=1

pixi = pIxI +
I−1∑
i=1

pixi = N + γ

I−1∑
i=1

pi(p̂i/pi)

= N + γ (1 − p̂I ) = N − N

U 2

pI

p̂I

(1 − p̂I ) . (B12)

So the maximal upside potential portfolio is

xMUP
i = −x[U 2(p̂I /pI ) − (1 − p̂I )]−1p̂i/pi i < I

xMUP
I = x

pI

[
1 − pI (1 − p̂I )

p̂I U 2

]−1

. (B13)

Comparing the maximal Sortino and SVP portfolios to the maximal Sharpe portfolio, we see
that for all but for the highest return state the excess returns are linearly related:

xMDR
i = x

D2
MDR

[
1 − (1 + S2

MSR)
pI
p̂I

]
+ S2

MSR
D2

MDR

pI
p̂I

xMSR
i for i < I

xMUP
i =

[
p̂I
pI

U 2 − (1 − p̂I )
]−1

S2
MSR[xMSR

i − x(1 + S2
MSR)] for i < I .

(B14)

Therefore the maximal-Sortino and maximal-SVP ratio portfolios are long positions in the
MSRP with an extra long position in the state security paying off in the highest market return
state combined with borrowing or lending.

C: Sharpe, Sortino, and SVP Ratios in a Lognormal Market

In this section of the appendix, we derive the Sharpe, Sortino, and SVP ratios in a lognormal
market. We denote one plus the realized rate of return on the market benchmark portfolio
by b and use this to index the continuous state space.
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If the market return has a continuously compounded expected rate of return μ and
logarithmic variance of σ 2, the probability density for the return over a period of length �t is

p(b) = 1

bσ
√

�t
φ

(
�n b − (μ − 1

2 σ 2)�t

σ
√

�t

)
(C1)

where φ(·) is the standard normal density function. The risk-neutral probability density,
p̂(b), is the same with μ replaced by r , the continuously-compounded interest rate.

The Sharpe ratio of the market is

Smkt = E[b] − er�t

(Var[b])1/2
= eμ�t − er�t

[e2μ�t (eσ2�t − 1)]1/2
= 1 − e−(μ−r)�t

(eσ2�t − 1)1/2
. (C2)

The square of the downside risk in the denominator of the Sortino and SVP ratios is35

E[Min2(b − er�t , 0)] =
∫ er�t

0
(e�nb − er�t )2p(b) db

=
∫ er�t

0
(e2�nb − 2er�t e�nb + e2r�t )p(b) db

= e(2μ+σ2)�t�

(
(r − μ − 3

2 σ 2)�t

σ
√

�t

)
− 2e(μ+r)�t�

(
(r − μ − 1

2 σ 2)�t

σ
√

�t

)

+ e2r�t�

(
(r − μ + 1

2 σ2)�t

σ
√

�t

)
. (C3)

The upside potential in the numerator of the SVP measures is

E[Max(b − er�t , 0)] =
∫ ∞

er�t
(e�nb − er�t ) dF(b)

= eμ�t�

(
(μ − r + 1

2 σ 2)�t

σ
√

�t

)
− er�t�

(
(μ − r − 1

2 σ 2)�t

σ
√

�t

)
. (C4)

For the maximal-ratio portfolios, analysis similar to that in Appendix A yields a maximal
squared Sharpe ratio of

S2
MSR =

∫
p̂2(b)/p(b) db − 1 = E[p̂2(b)/p2(b)] − 1 (C5)

35 For a normal random variable, z, with mean z and variance v2, the upper and lower partial exponential
moments are ∫ ∞

K
eξz dF(z) = exp(ξz + 1

2 ξ2v2)�

(
K + z + ξv2 − K

v

)
∫ K

0
eξz dF(z) = exp(ξz + 1

2 ξ2v2)�

(
K − z − ξv2

v

)
.
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for a portfolio with an excess return of x∗(b) = x + γ [p̂(b)/p(b) − 1] where γ = −x/S2
MSR

as before. To determine the maximal Sharpe ratio portfolio, we need the likelihood ratio

p̂(b)

p(b)
= exp

{
− [�nb − (r − 1

2 σ 2)�t ]2

2σ 2�t
+ [�nb − (μ − 1

2 σ 2)�t ]2

2σ 2�t

}

= b−(μ−r)/σ2
exp

[(
μ + r

σ 2
− 1

)
μ − r

2
�t

]
. (C6)

The square of the maximal Sharpe ratio is

S2
MSR = E[p̂2(b)/p2(b)] − 1 = exp

[(
μ + r

σ 2 − 1
)

(μ − r)�t

]
E[b−2(μ−r)/σ2

] − 1. (C7)

Because �n b is normally distributed with mean (μ − 1
2 σ2)�t and variance σ 2�t, �nbξ is also

normally distributed with E[�nbξ ] = ξ(μ − 1
2 σ2)�t and variance Var[�nbξ ] = ξ2σ 2�t . Using

the moment generating function for a normal random variable,36 the maximal Sharpe ratio
is

S2
MSR = exp

[(
μ + r

σ 2
− 1

)
(μ − r)�t

]
× exp

[
−2

μ − r

σ 2
(μ − 1

2
σ 2)�t + 2(μ − r)2

σ 2
�t

]
− 1

= exp
[

(μ − r)

σ 2
�t(μ + r − σ 2 − 2r + σ 2)

]
− 1 = exp

[
(μ − r)2

σ 2
�t

]
− 1 . (C8)

The maximal-Sortino ratio and maximal-SVP ratio portfolios will be degenerate with an
infinite holding of the security for the highest return ‘‘state’’ and an infinitesimal holding of
all other ‘‘state’’ securities. Both maximized ratios will be infinite as well. However, if we
restrict attention to ‘‘well-formed’’ portfolios then the ratios can be computed.

For example, consider a call option with a strike price of H written on one dollar invested
in the market. The payoff on this portfolio is C(b) = Max(b − H , 0)

The Sharpe, Sortino, and SVP ratios of the portfolio are

S = E[C(b)]−C0er�t√
E[C2(b)]−E2[C(b)]

D = E[C(b)]−C0er�t√
E[Max2

(C0er�t −C(b),0)]
U = E[Max(C(b)−C0er�t ,0)]√

E[Max2
(C0er�t −P(b),0)]

(C9)

where C0 is the cost of the option. The expectations in the Sharpe ratio are

E[C(b)] =
∫ ∞

H

(b − H)p(b) db = eμ�t�(hH ) − H�(h−
H )

E[C2(b)] =
∫ ∞

H

(b − H)2p(b) db = e(2μ+σ2)�t�(h+
H ) − 2Heμ�t�(hH ) + H 2(h−

H )

where hK ≡ −�nK + (μ + 1
2 σ 2)�t

σ
√

�t
h±

K ≡ hK ± σ
√

�t . (C10)

36 The moment generating function for a normal random variable, z, with mean z and variance σ2
z is

ψ(s) ≡ E[exp(sz)] = exp(sz + 1
2 s2σ2

z ).
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The square of the risk measure in the denominators of the Sortino and SVP ratios is∫ C0er�t +H

0
[C0e

r�t − Max(b − H, 0)]2p(b) db = C2
0e2r�t

∫ H

0
p(b) db

+
∫ C0er�t +H

H

(C0e
r�t − b + H)2p(b) db

= C2
0e2r�t�(−h−

H ) + (C0e
r�t + H)2[�(h−

H ) − �(h−
C0er�t +H

)] (C11)

−2(C0e
r�t + H)eμ�t [�(hH ) − �(h

C0er�t +H
)] + e(2μ+σ2)�t [�(h+

H ) − �(h+
C0er�t +H

)] .

The numerator for the Sortino ratio is the same as for the Sharpe ratio. For the SVP ratio, it
is∫ ∞

H+C0er�t
(b − H − C0e

r�t )p(b) db = eμ�t�(h
H+C0er�t ) − (H + C0e

r�t )�(h−
H+C0er�t ) .

(C12)

D: Timing Measures: Henriksson-Merton and Treynor-Mazuy

The Henriksson-Merton (HM) and Treynor-Mazuy (TM) measures are based on the
regression

x̃t = γ 0 + γ 1m̃t + γ 2w̃t + ε̃t (D1)

where x̃t and m̃t are the excess returns on the portfolio and the market and w̃t is a variable
used to capture timing ability. The variables used by HM and TM are w̃t ≡ Max(−m̃t , 0)

and w̃t ≡ m̃2
t , respectively.

To achieve a good score on these measures we want both γ 0 and γ 2 as large as possible.
For an OLS regression, the coefficients will be

γ 1 = σxmσ 2
w − σxwσmw

σ 2
mσ 2

w − σ 2
mw

γ 2 = σ xwσ 2
m − σxmσmw

σ 2
mσ 2

w − σ 2
mw

γ 0 = x − γ 1m − γ 2w . (D2)

The parameters, m,w, σ 2
m, σ 2

w , and σmw , are fixed by the environment so the regression
coefficients are determined by the portfolio’s expected return and its covariances with the
market and the timing variable, w. Since the expected return and the covariances are linear
in the individual state returns, any values for x, σ xm, and σ xw and hence the regression
coefficients can be achieved with four or more assets.37

With more than four assets, we have extra degrees of freedom. It makes sense to find
the minimum-variance portfolio that achieves a given HM or TM score. Therefore, we fix
σxm, σ xw , and x (which fixes γ 0, γ 1, and γ 2) and minimize the portfolio’s variance. The
optimization problem is

Min
1
2

∑
pix

2
i

37 If the CAPM holds, then the mean excess return for each asset would be proportional to its covariance
with the market, and we would not be able to set them independently for a portfolio. As we have seen, the
CAPM cannot hold in a market with sufficient number of derivative assets.

1543



The Review of Financial Studies / v 20 n 5 2007

subject to σ xm =
∑

pixi (mi − m) σxw =
∑

pixi (wi − w) x =
∑

pixi 0 =
∑

p̂ixi

(D3)

where the last constraint fixes the cost of the portfolio’s excess returns to zero. Forming the
Lagrangian and minimizing gives

L ≡ 1
2

∑
pix

2
i + λ1

[
σxm − ∑

pixi (mi − m)
] + λ2

[
σxw − ∑

pixi (wi − w)
]

+λ3
[
x − ∑

pixi

] + λ4
[
0 − ∑

p̂ixi

]
0 = ∂L

∂xi
= pixi − λ1pi(mi − m) − λ2pi(wi − w) − λ3pi − λ4p̂i

⇒ xi = λ1(mi − m) + λ2(wi − w) + λ3 + λ4p̂i/pi .

(D4)

The optimizing portfolio in a complete market can be split into four parts. It will hold bonds,
λ1 units in the market, −λ4 in the MSRP, and λ2 units in a contract that pays w. For HM,
the last will be a put option that is at-the-money in present value terms. For TM, it will be a
derivative contract with paying off the squared excess market return.

The Lagrange multipliers that determine these positions are the solutions to the
constraints38

x =
∑

pixi =
∑

pi [λ1(mi − m) + λ2(wi − w) + λ3 + λ4p̂i/pi ] = λ3 + λ4

σxm =
∑

pi(mi − m)xi = λ1

∑
pi(mi − m)2 + λ2

∑
pi(mi − m)(wi − w)

+ λ3

∑
pi(mi − m) + λ4

∑
p̂i (mi − m)

= λ1σ
2
m + λ2σmw − λ4m

σxw =
∑

pi(wi − w)xi = λ1

∑
pi(mi − m)(wi − w) + λ2

∑
pi(wi − w)2 (D5)

+ λ3

∑
pi(wi − w) + λ4

∑
p̂i (wi − w)

= λ1σmw + λ2σ
2
w + λ4

∑
p̂i (wi − w)

0 =
∑

p̂ixs =
∑

p̂i [λ1(mi − m) + λ2(wi − w) + λ3 + λ4p̂i/pi ]

= −λ1m + λ2

∑
p̂i (wi − w) + λ3 + λ4

∑
p̂2

i /pi

Solving for the Lagrange multipliers we have

xi = x + λ4(p̂i/pi − 1) + λ1(mi − m) + λ2wi

λ1 = σxm(S2
MSRσ 2

w − �2
w) − σxw(S2

MSRσmw − m�w) + x(σmw�w − mσ 2
w)

σ 2
m(S2

MSRσ 2
w − �2

w) − σmw(S2
MSRσmw − m�w) + m(σmw�w − mσ 2

w)

λ2 = −σxm(S2
MSRσmw − m�w) + σxw(S2

MSRσ 2
m − m2) − x(σ 2

m�w − mσmw)

σ 2
m(S2

MSRσ 2
w − �2

w) − σmw(S2
MSRσmw − m�w) + m(σmw�w − mσ 2

w)
(D6)

38 Recall that the risk-neutral expectation of the excess market return m,
∑

p̂imi is zero. This is not true of w

as it is not the value of a marketed asset. The sum
∑

p̂i (wi − w) is the difference between the risk-neutral
and true expectations of w, Ê[w̃] − E[w̃].This is the negative of the forward risk-premium.
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where λ3 = x − λ4

λ4 = σ xm(−�wσmw + mσ 2
w) + σxw(σ 2

m�w − mσmw) − x(σ 2
mσ 2

w − σ 2
mw)

σ 2
m(S2

MSRσ 2
w − �2

w) − σmw(S2
MSRσmw − m�w) + m(σmw�w − mσ 2

w)

�w ≡ Ê[w̃] − E[w̃] .

The coefficient γ 2 is a measure of the manager’s timing ability while γ 0 measures stock
selection ability.

Merton (1981) has shown that in the context of the HM model, the total contribution
of the manager’s timing and selectivity ability per dollar invested over a time interval �t is
γ 0e

−r�t + γ 2P (1,�t; er�t ) where P (S, τ ; K) is the value of a put option with strike price K

and time to maturity τ written on the market. The manager provides an extra average return
of γ 0. The first term is the present value of this. (It is discounted at the risk-free rate since
the extra return is not correlated with the market.) In addition, through timing the manager
provides the fraction γ 2 of a protective put. The total contribution is the amount by which
the value of the protective put exceeds its average ‘‘cost’’ measured by the lowered present
value of the extra average return.

For the TM model the total contribution of timing and selectivity is

total contributionTM = γ 0e
−r�t + γ 2e

r�t (eσ2�t − 1) . (D7)

The first term is the same as for the HM model. The second term is γ 2 multiplied by the
present value of the squared excess return on the market. This is not an asset price, but its
present value can be determined as follows. Let Mt denote the value of the market portfolio
with M0 = 1. We are interested in wt ≡ (Mt − ert )2 = M2

t − 2Mte
rt + e2rt . For a lognormal

market, the present value of wt is

e−r�t (Ê[M̃2
�t ] − 2er�t

Ê[M̃�t ] + e2r�t )

= e−r�t (e(2r+σ2)�t − 2er�t er�t + e2r�t ) = er�t (eσ2�t − 1) (D8)

where Ê denotes the risk-neutral expectation. As in the HM model, the manager’s timing
provides the fraction γ 2 of a derivative security; this time one that pays the square of the
excess market return.
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