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P E R S P E C T I V E S

The (Time-Varying) Importance of Disaster Risk
Ivo Welch

How much of the historical 7% per year equity risk premium could have been risk compensation for disasters 
that just happened not to have occurred? The answer can be found in below-the-money put prices, which would 
have protected against such disasters. Using the cost of rolling over one-month index put options, I show that 
the maximum possible premium for crash risk could not have accounted for more than about 2% per year, 
thus leaving about 5% per year for reasons other than sudden disasters. I also provide a novel "conservative 
diffuse prior" approach for dealing with black swan risk.

From 1983 to 2012, the geometric rate of return 
of the US equity premium (over short-term 
Treasury bills) was an impressive 7.2% a year. 

Can this large return be attributed to left-tail low- 
probability events that just happened not to have 
occurred? For example, if there was a "once in 200 
years" catastrophic event of a 99% loss, even risk- 
neutral investors would have demanded 7% in non­
disaster years just to break even. In my study, I inves­
tigated the potential role of such "dark" events.1

By definition, realized US stock returns alone 
cannot be easily used to assess such risk. After all, 
the hypothesis states that the disaster did not occur. 
Therefore, I looked at the pricing of deep-below-the- 
money index put options that would have protected 
against extreme left-tail events. The maximum pos­
sible disaster component could not have accounted 
for a premium of more than 2.1%/year because a 
put-protected "crash-insured" stock position (which 
could not have lost more than 15% in any one month) 
still yielded 5.1%/year. If the expected crash compo­
nent had been more than 2.1%, even a risk-neutral 
investor would have expected to earn more by hold­
ing put-protected rather than unprotected stock—a 
non sequitur, however, if risk taking is compensated 
in financial markets. An upper limit of 2.1% is eco­
nomically large but insufficient to explain the entire 
equity premium. To put this in perspective, even the 
maximum 2.1% disaster risk was less than the 3% 
sampling standard error around the mean.
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Editor's note: This article was reviewed and accepted by 
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was submitted.

The bound can be even tighter. The 2.1%/year 
is a "dumb" average obtained by always buying a 
put. Yet, the price of put insurance was time vary­
ing. At some times (e.g., during the 2008 crisis), the 
protection cost more than 10% a year and could have 
easily and fully accounted for an annual equity pre­
mium of 20%. At other times (e.g., in 2015), it cost 
less than 0.5% a year. Consequently, an even tighter 
bound on the possible influence of disasters can be 
obtained by considering a smarter strategy: In high- 
put-price months, a risk-neutral investor could have 
switched from put-protected stocks to Treasury bills. 
A simple, implementable, dynamic timing strategy— 
buying put-protected stocks when puts were cheap 
and switching the entire portfolio to Treasuries when 
puts were "expensive" (in absolute and volatility 
terms)—would also have had no exposure to left-tail 
disasters but would still have yielded 5.8% a year, 
on average. This strategy would limit the maximum 
influence attributable to disaster risk to 7.2% -  5.8% 
»1.5% a year.

It is important to recognize that rolling over 
deep-below-the-money put options would have 
provided protection, not against every kind of stock 
market risk but against only one particular kind of 
risk—that of a one-month crash. Earthquakes pro­
vide a good analogy. The California Earthquake 
Authority (CEA) sells insurance policies with finite 
time horizons (usually one year) and deductibles 
(usually 15%) that do not protect against every kind 
of harm from earthquakes. First, they do not protect 
against consecutive modest earthquakes, in which 
annual repairs repeatedly cost 15% of the home's 
value. Thus, they do not protect against, say, total 
losses of 80% over 10 years if earthquake losses 
arrive in many -15%/year pieces. (Such a scenario
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seems unlikely for a stock market price process that 
economics forces into a near martingale.) Second, 
rolling over one-year policies does not protect 
against higher insurance policy prices in later years, 
especially if a few earthquakes occur. Third, these 
policies do not protect against cases in which the 
insurance seller (the CEA) will be unable to make 
good on its policy promises.

In my study, I attempted to describe the implica­
tions of equivalent disaster protection for a marginal 
investor holding the stock market. I investigated the 
historical cost of rolling over one-month put option 
insurance with a 15% deductible, assuming that the 
policy sellers would have been able to make good 
on their promises if a major stock market collapse 
had occurred. Under these assumptions, the price 
of below-the-money index puts can decompose the 
equity premium into the previously mentioned maxi­
mum possible premium that could have been crash 
risk (about 2%) and everything else (at least about 5%). 
Other plausible candidates that might help explain the 
7% observed equity premium include sampling varia­
tion, "ordinary" utility risk, a declining risk premium, 
long-run risk, and regime change.

The 1.5%-2.0% range is the product of a prob­
ability of a disaster and the magnitude of a disaster. 
If we are willing to adopt a "conservative diffuse 
prior" sampling model, we can disentangle the two. 
Intuitively, this article asks, "What can we learn 
from a long history in which we have never seen an 
event?" It quantifies that it is implausible to believe 
either that unseen events are frequent or that they 
are impossible. With such a model, it is then possible 
to assess the maximum magnitude of disasters as 
having been no worse than about -70%.

Historical Index Put Pricing
For my study, I obtained data on index put options 
from the Chicago Mercantile Exchange (CME) for 
September 1983-October 2012 (323 months, or about 
27 years), when CME index put options were readily 
available (with some missing months early on). I 
used Ken French's factor premium dataset to easily 
replicate stock returns.2 In the 323 months for which 
I had good CME option-pricing data, the arithmetic 
monthly mean rate of return was 0.67%, the geomet­
ric return was 0.58%, and the standard deviation 
was 4.3%.

We want to assess the historical pricing of deep- 
below-the-money put option protection, but such 
index options did not trade frequently. In many 
cases, the reported end-of-day, below-the-money 
(BTM) put prices were from trades in the morn­
ing, whereas the end-of-day index futures prices 
were from afternoon trades. Calculating prices and 
implied volatilities from morning option prices

against end-of-day futures prices as an underlying 
base could produce misleading results. Matching 
dividends and exact intraday times is important 
for accurate estimation of implied volatilities (used 
only for smoothing multiple put prices). Appendix 
A describes the construction of the option-pricing 
data in more detail.

Ideally, we would consider put-protected 
stock positions using puts that were far below the 
money—say, 30% below the money. Such options 
would offer good protection against -30% to -100% 
disasters for a very small absolute cost (annual 
yield drag).3 Figure 1 shows that such options were 
not actively traded. It plots the availability of low- 
strike-price options—specifically, the moneyness of 
both the fifth-lowest-strike-price option transaction 
and the fifth quantile's lowest-strike-price option 
transaction on each day. Before 1985, transactions of 
15%-below-the-money put options were sporadic. 
But after 1985 and especially after 1987, they became 
more commonly available. Therefore, I focused my 
analysis on months with solid end-of-prior-month 
data on put options.

Figure 2 shows the Black-Scholes implied vola­
tilities of options with a strike price at the money 
and the incremental implied volatilities of put options 
with a strike price 15% below the money—a measure 
of the steepness of the volatility smile. There are both 
low- and high-frequency variations in these two time 
series, but remarkably, the steepness jumped after 
the 1987 crash and has remained steady ever since. 
The implied deep-left-tail volatility has behaved 
similarly to center volatility, even in 2000 and 2008. 
The increase in ordinary at-the-money volatility risk 
seems to have fully captured the increased fear of 
tail-risk events. Investors seem to have feared tail 
risk no differently than they feared ordinary volatil­
ity risk before and after the Great Recession of 2008.4

Table 1 considers only options that match strin­
gent criteria: options that were very close to 15% below 
the money and very close to 30 calendar days until 
expiration. Only about 1,200 put options had strikes of 
15.5% to 14.5% below the money and between 26 and 
34 calendar days until expiration. For these options. 
Panel A of Table 1 shows that the implied volatility 
was about 0.32. The inference is similar if the sample 
is restricted to medium-volatility periods—that is, 
periods in which the preceding three-month observed 
annualized log volatility was between 16% and 24%. 
In my data analysis, I relied on the volatility-smoothed 
prices of these options.

In sum, the empirical data suggest that an 
implied-volatility pricing of 30% (15 pps above the 
prevailing volatility) seems reasonably representa­
tive for the average cost of 15%-below-the-money, 
30-day index puts from 1986 to 2012.
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Figure 1. Availability of BTM Index Options

A. Moneyness of Fifth-Lowest Money Put Option
Fifth Lowest of -log(S/PV(K))

B. Moneyness of Fifth-Lowest Quintile Put Option
Fifth Percentile of -log(S/PV(K))

Notes: This figure plots the fifth-lowest money and fifth-lowest quintile put option moneyness. Put options that were about 15% below 
the money were irregularly available after 1983 and became generally available around 1988.

Figure 2. Time Variation in Ordinary Volatility and Tail-Risk Volatility

Smoothed Risk and Tail Risk

Notes: The solid line represents the Black-Scholes volatility calculated from options with strike prices 
around 0%. The dotted line represents the Black-Scholes volatility calculated from options with strike 
prices of -15% moneyness minus the equivalent calculated from options with strike prices of 0%. It mea­
sures the steepness of the left side of the (put-pricing) implied-volatility smile. There was time variation 
in the costs of options, both high frequency and low frequency. The steepness of the smile increased in 
1987 but remained stable thereafter—including in 2000 and 2008. IV is implied volatility.
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Table 1. Most Applicable Monthly -15% Put Options

1,200 Options: Moneyness (-15.5%, -14.5%); Calendar Days Left (26,34)
Mean Std. Dev. 25th Median 75th

Annualized 3-month prevailing
log volatility 0.19 0.09 0.12 0.17 0.22

Option-implied log volatility 0.33 0.07 0.28 0.32 0.36
Difference 0.14 0.06 0.12 0.15 0.17
Date 1997 2000 2006

470 Options: Moneyness (-15.5%, -14.5%); Calendar Days Left (26, 34); 
Historical Volatility (0.16, 0.24)

B. 26-34 Days to expiration and -15.5% to -14.5% strike price, excluding outliers
Annualized 3-month prevailing 

log volatility 0.19 0.02 0.17 0.19 0.21
Option-implied log volatility 0.34 0.05 0.31 0.33 0.36
Difference 0.15 0.05 0.11 0.15 0.18
Date 1999 2000 2007

The Maximum Disaster-Based of return (thus a 15% loss) was observed, adding
Equity Premium
We can now assess the actual performance of put- 
protected equity strategies during the 323-month 
(27-year) sample, when below-the-money CME 
index put options on the S&P 500 Index were readily 
available.

Disaster-Protected Equity Performance.
Consider an investor who would have purchased 
323 one-month CME index puts with strike prices 
of about 15% below the money. As mentioned in 
the introduction, although such puts would not 
have protected stock positions against (consecu­
tive) monthly -14% rates of return, they would have 
protected quite well against sporadic giant disas­
ters. There is good evidence that stock returns are 
not and cannot be very serially correlated because 
stock prices should incorporate the implications of 
repeated catastrophes not piecemeal but instantly.5

Compared with a naked stock portfolio, a put- 
protected stock portfolio would have been much less 
affected even by the most extreme possible disaster 
of -99% (a near-complete collapse), losing at most 
15% in any one month. From 1983 to 2012, if exactly 
one disaster had occurred in one more month, the 
observed 323-month geometric mean of 0.58% would 
have been about

(l + 0.58%)323 x(l-15%)
1/324

— 1« 0.53%.

Although one additional 15% loss would have 
hurt, it would have altered the geometric mean per­
formance of the put-protected stock market position 
by "only" 5 bps per month. Considering the longer 
1926-2015 sample, in which not a single -99% rate

one would have reduced the holding rate of return 
on the put-protected portfolio by only about 2 bps 
per month. Because the probability of more than 
one or two terrible disasters when not even one was 
in fact observed is likely to be low (discussed later in 
the article), the expected reduction in the geometric 
mean return of the put-protected portfolio due to 
disasters would have been modest.

Instead, the main cost of disaster protection 
would have been the cost of purchasing the index 
puts every month. To assess the prevailing implied 
volatility at the start of each month, I used the 
implied volatilities of index put options with a strike 
price of about -15% over all trading days after the 
23rd of the preceding month. The first month of data 
was April 1983 and the last month was October 2012, 
with some missing months (early on) in between.

Figure 3 plots the annualized cost of monthly puts 
and the 12-month moving average (see also Martin 
2011). The 30-day put price varied from $0 to $0,028, 
with a mean of $0.00125, a median of $0.0004, and a 
standard deviation of $0.0026.6 There are long periods 
in which disaster protection was almost free (e.g., 2015) 
and other periods in which it was very expensive.

The total cost of rolling this monthly 15% BTM 
put protection over the entire sample was less than 
2% a year: the key result of my study.7 The kind of 
sudden stock market collapses worse than 15% in 
any one month could not have accounted for more 
than 2% of the 7% equity premium because insurance 
against such events could have been purchased by 
giving up a 2% equity premium.

Improved Disaster-Protected Equity 
Performance. Figure 3 shows that there were also 
periods in which the monthly put protection was
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Figure 3. Annual Average Cost of Monthly -15% Put Protection

1985 90 95 2000 05 10

- Cost of Put Protection in Annualized Terms ........................... 12-Month Rolling Sum

Notes: The solid line represents the cost of monthly -15% put protection (annualized). The dotted line 
represents the 12-month rolling sum. There were long stretches when disaster protection was almost 
free but also long stretches when it was fairly expensive.

considerably more expensive than the average 
monthly geometric equity premium estimate of 58 
bps. For example, when the implied volatility was 
50%, a one-month put with a strike price of 15% 
BTM would have cost about 85 bps, which raises the 
interesting question of whether put protection was 
cheap only when there was no equity premium to 
be had. Although we cannot measure the frequency 
of (unrealized) disasters in these periods, we can 
measure the realized ex post average mean excess 
rate of return on stocks, as shown in Table 2.

At times, disaster probabilities or fears were high 
enough that insuring against them would have been 
very expensive, and the strategy for "unimproved" 
disaster-protected equity performance would nev­
ertheless have blindly purchased these expensive 
puts. The equity return in months with put costs 
of more than 2%/year was not only very risky but 
also very good.

The original question of bounding the disaster 
component in the equity premium now becomes the 
question of whether a small risk-neutral investor 
could have done better with a safer strategy. This

investor could have decided to be disaster protected 
in the stock market, earning a premium of 5%-10% 
when put protection was cheap and exiting the stock 
market altogether for Treasuries when protection 
was too expensive (losing out on some ex post spec­
tacular returns, however). Exiting the stock market 
altogether when put protection became too expen­
sive would not have required sophistication.8

Table 3 reports the rate of return on a strategy 
of put-protected stocks when the implied volatility 
was less than x and T-bills otherwise.

All these strategies were safer than the unpro­
tected stock investment that would have yielded 7.2%. 
Their returns take into account that an investor who 
was not in the stock market would have lost spec­
tacular positive returns in those months when puts 
were expensive. The dynamic strategy that exited the 
market at put prices of 50% implied volatility would 
have yielded a geometric rate of return of 5.8% a year, 
suggesting either that investors earned at most 1.5% 
as a disaster premium (on the 7% equity premium) 
or that puts to insure against these disasters were too 
cheap even for a risk-neutral investor.9

Table 2. Realized ex post Average Mean Excess Rate of Return by Put Cost

Put Protection Cost (annualized) < 0.5% 0.5%-l% l%-2% 2%-4% >4%
Realized geometric equity premium 10.5% 5.3% 5.1% 18% 13%
Number of months 161 203 55 35 30
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Table 3. Rate of Return for Put-Protected Stock Market Strategies with Implied BTM Volatility 
below x and T-Bills Otherwise

________ Exit Put-Protected Stock If Implied BTM Volatility Greater Than________
____________________________ 0%_______ 30% 35% 40% 45% 50% 55% °o (never)
Average geometric excess

return_____________________ 0.0% 3.0% 3.9% 5.2% 4.7% 5.8% 5.6% 7.2%

Observations and Caveats. Without additional 
assumptions, it is impossible to distinguish between 
a sudden (rational or irrational) increase in disaster 
fear and a sudden increase in disaster probability. 
Thus, it is impossible to determine what a truly risk- 
neutral smart marginal investor should have held.

There were months in which the put prices were 
so high that they effectively offered no meaningful 
upper bound on the importance of (compensation 
for) crash risk. For example, we cannot say whether 
equity premiums in 2009 were primarily due to 
compensation for disaster risk. In 2015, the bound 
was tight, and it seems prima facie implausible to 
argue—and still implausible today—that fear of 
disaster risk could account for a premium of more 
than about 1%/year.

Although I relied on actual CME market 
quotes and transactions, my study still had to rely 
on assumptions. I still used index put option price 
estimates, not actual transactions by an investor who 
followed the put protection strategy. I still assumed 
that investors could have purchased 30-day put 
options at the beginning of the month—although 
index options did not expire at the end of the month 
but, rather, at the end of the third week. I did not 
use the ask price on the option, nor did I assess the 
hypothetical price impact of put purchases. (I can 
thus report only the marginal cost of protection, not 
the average cost of protection if, for example, a giant 
fund like CalPERS had attempted to buy insurance 
for its whole portfolio. I did not analyze a general 
equilibrium model in which investors wouldbehave 
differently wholesale.) I still assumed that investors 
could have purchased the appropriate put options 
at an interpolated price of similar options in the last 
week of the preceding month. But I also assumed 
that a real-world investor would not have been 
more strategic about buying cheaper options. (The 
strategies considered here did not opportunistically 
select the cheapest put available.) An investor could 
also have taken advantage of put protection at 25% 
below the money (when available). Judging from the 
(admittedly scant) evidence reported earlier, either 
action could have been considerably cheaper for 
rolled-over extreme-event protection.

Despite these caveats, there is no reason to 
believe that the assumptions and strategies presented 
here are misleading. It is inconsistent to believe both

that there is a great deal of highly compensated crash 
risk and that put option protection against crash risk 
could be purchased for 0.2%/year in 2015. Either 
crash risk was not that important or below-the- 
money puts were significantly underpriced.

The Probability and Magnitude of a 
Disaster
Does the l%-2% disaster risk premium reflect “bad 
and rare" or "terrible and extremely rare" scenarios? 
Should we think of disasters as one-in-a-thousand or 
one-in-a-million probability events? Should we think 
of them as -100% complete losses or -50% crashes? 
Can we disentangle probability and magnitude? This 
task requires further assumptions. One common 
method is to impose a model of utility and/or asset 
pricing. In this article, I introduce another method. 
This method makes assumptions about priors and 
then estimates the frequency of disasters, in effect 
asking. What should we learn from historical data in 
which no such event was ever observed? It quantifies 
the intuition that we should consider events that have 
never occurred to be neither frequent nor impossible.

To obtain a posterior probability, we must start 
with a prior probability before data become available. 
Let us assume that this prior probability about the 
frequency of disasters in the population is diffuse. 
Before any data are sampled, the subjective imposed 
belief is that there is an equal probability that zero, 
one, two, or more disasters could happen. This 
assumption is very conservative: The probability 
of no disasters is no higher than that of a disaster 
every month. Note that this diffuse prior on disasters 
is not the same as assuming a constant per-period 
probability of a disaster (in which case, T x p disas­
ters would be more likely to be observed). It is also 
not the same as assuming that the population and 
sampling distributions are identical.

As with all (Bayesian) analysis, a different prior 
would yield a different posterior. The diffuse prior 
starts with the assumption of a large frequency of disas­
ters before any data are observed. The data will shift the 
prior toward a posterior with more mass on the left 
(few disasters). A prior that considers disasters rarer 
from the outset would only strengthen this inference.10

In this section, I show that the implication of this 
diffuse prior is that in the absence of even a single
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disaster observation in the sample, there is a 37% 
probability that there was/is at least one such disas­
ter lurking in the true population distribution. Even 
more intuitively, it is analogous to a statement that 
the probability of observing an x-year flood within x 
years is about 63% (at least for x greater than a hand­
ful). In the stock market application, the equivalent 
statement is that the probability that a true "100-year 
financial market disaster" was not observed within 
the last 100 years of the sample is 37%.

Prior Probability. A dogmatic prior would 
assume parameter certainty, so there would be no 
learning from data. For example, if the prior is that 
there is a 0.0001% (or 90%) probability in each month 
of a -99% disaster, then no amount of data can alter 
this probability assessment. A dogmatic prior not 
only seems implausible, but it also precludes all 
learning from data.

Another type of prior would be to assume that 
the population distribution has a particular shape. 
For example, in Orlik and Veldkamp (2014), the prior 
is that the population distribution is lognormal. Data 
then update the parameters—here, a mean and vari­
ance. Leaning heavily on the precise distributional 
shape allows updating the estimate of the probability 
mass everywhere, including in the left tail.

Instead, we can start with a "nonparametric" 
diffuse prior. Let us assume that investors (in 1983) 
assessed the probability of zero disasters to be the 
same as the probability of 1 disaster, the probability 
of 2 disasters, the probability of 3 disasters, and so 
on—or even the probability of 323 disasters. The 
probability (p) of a disaster in any one month was 
thus

Prior prob (p = i IT ) = 1 IT
= 1/323 [V z e (0, T )].

Note that this distribution is discrete and not 
continuous.11 The choice of such a diffuse prior is 
defensible and arguably pessimistic (conservative), 
but it is not uncontroversial. In its defense, diffuse 
priors are usually implicit in all empirical analyses.

Bayesian (Conditional) Updating. Next, we 
need to calculate the conditional probability of 
observing at least one disaster when sampling, given 
an underlying true probability p of a disaster in any 
one draw. For example, if the true p were 0%, there 
would be zero possibility of drawing a disaster in 
any one month—and thus in any of the 323 months. 
The probability of seeing no disaster would be 100%. 
If the true probability of observing a disaster in one 
month were p = 1/323 » 0.3%, there would be a 
1 -  (1 -  1/323)323 « 63.3% probability of sampling 
at least one disaster in 323 months. If the true p =

9n

2/323 » 0.6% in any one month, there would be a 
(1 -  2 /323)323 w 86.6% probability of sampling at least 
one disaster in 323 months. And so on. Appendix A 
develops the conditional probabilities in more detail 
and provides further intuition.

Note that this updating works for any true popu­
lation distribution, which determines where each 
bin starts and ends. With more data samples, the 
magnitude of the worst possible outcome goes down 
(becomes more extreme) and the size of each bin 
shrinks. In our case, think of dividing the assumed 
true probability distribution into 323 bins, each with 
an equal probability mass of 1/323 « 0.3%. Assume 
that the true population distribution is such that 
the leftmost bin, containing probability mass 1 /323, 
ranges from -100% to -99% and that the next leftmost 
bin ranges from -97% to -99%. Then sample from the 
population distribution 323 times. The probability 
of drawing at least once from the leftmost bin (i.e., 
given this true distribution, a rate of return worse 
than -99%) in 323 tries is about 63.3%. The probabil­
ity of drawing at least once from the two leftmost 
bins (i.e., observing at least one rate of return worse 
than-97%) is 86.6%.

Posterior Probability. Using the diffuse prior 
and the conditional probability of observing a disas­
ter, Bayes' rule gives the posterior probability of dark 
events in the population. For example, the posterior 
probability that there are truly zero disasters in the 
population (p = 0), given that none were observed 
in 323 sample draws, is

Posterior prob [p = 0) =
_____________ 100%x 1/323_____________
100% x 1 / 323 + 63.3% x 1 / 323 + 86.6% x 1 / 323 H—  

« 63.2%.

Using some algebra, we can show that the marginal 
and cumulative probability density functions gen­
eralize to

/ ( 0«UTf> F ( z > l - e - (l+,) Vze(0,l,—), (1)
e

where i is the number of disasters 
[z = 0 => /  (0) = F’(0) = 62.3%]. Given that no disas­
ter occurred (i.e., in our example, no rate of return 
of -99% or worse was observed), the posterior prob­
ability, as shown in Table 4, is 63.3% that p —  0 (no 
probability of a rate of return below -99%), 23.3%

Table 4. Probability of Number of Dark Events 
Drawn in True Population Being 
Worse Than the Observed Worst Draw

______________ 0 1 2 3 4 5
Probability 63.3% 23.3% 8.6% 3.1% 1.2% 0.4%
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that p = 0.3% (a 1 /323 probability mass below -99%), 
8.6% that p = 0.6% (a 2/323 probability mass below 
-99%), and so on.

It is counterintuitive but correct that the posterior 
probability function does not depend on the number 
of samples (T) to a first-order approximation.

In sum, sampling fairly from a stable underlying 
distribution, a diffuse prior over unobserved dark 
events yields a posterior probability with some 
appealing features:
1. The sampled distribution is the maximum likeli­

hood estimate of the population distribution.
2. The probability that we have sampled any one 

population bin (specifically, the leftmost bin) in 
a sample is about 63.2%, which is about 2.7 times 
as high as the 23.3% probability that a specific 
dark event has not yet been observed.

3. Although it is quite plausible that there are some 
unobserved dark events, it is outright implau­
sible to assume that five or more dark events 
(and specifically the leftmost five) have never 
been sampled.

4. There is about a 2-in-3 chance that there was 
no lurking, unobserved dark rate of return (i.e., 
that we have already sampled from a particular 
probability mass, such as the leftmost one) and 
a l-in-3 chance that there was.

5. The probability of one or more dark events is 
1 -/(0 ) * 36.8%.

6. The expected number of unobserved dark events 
is not zero but, rather, about Z /(z) x z « 0.58.

The Maximum Magnitude of 
Unsampled Disasters
We can now use the maximum equity premium 
component (l%-2%) and the estimated frequency 
of unobserved disasters (about 37%) to infer a rea­
sonable maximum magnitude of a disaster in the 
population: Such unobserved disasters could not 
have been expected to be worse than -70%. If disas­
ters had been any worse, even a risk-neutral investor 
would have been better off not holding unprotected 
stock. The frequency of such disasters would simply 
be too high. Again, a less diffuse and less pessimistic 
prior (i.e., that disasters are less common) would 
yield even more-modest estimates of the worst.

Investment Horizon and Disaster Risk. Our
concern is not that there were a few unsampled dark 
realizations (events) in the center of the population 
distribution. Rather, our concern is that there were 
a few high-magnitude left-tail realizations that hap­
pened not to have been observed (yet). It is easiest to 
assume that our concern is with dark returns of one 
specific magnitude, rD. (If the magnitudes of dark

returns are heterogeneous, most of the discussion still 
applies to the geometric means of these dark returns.) 
Most bounds emerge if we consider the worst case: an 
unrecoverable rate of return of rD = (-1).12

The probability of a disaster has a counterintui­
tive effect on the behavior of investors: When there 
is a disaster probability, even risk-neutral investors 
cannot ignore their investment horizon. That is, an 
investor who plans to be in the market for 1 year 
would have a different trade-off than an investor 
who plans to be in the market for 10 years, even if 
the latter investor can exit after 1 year. Perhaps more 
surprisingly, in the presence of disasters, both "gam­
bler's ruin" and compounding can work together so 
that long-term investors prefer bills and short-term 
investors prefer stock.

For example, if the prior is that a disaster has a 
dogmatic positive probability (100%)—say, a 1/323 
probability of rD = -1 and a 322/323 probability of rG 
= 0.0058 for one month—then a single-month naked- 
stock investment would have an expected rate of return 
of 100% x [(322 / 323) x 0.0058 +1 / 323 x (-1)] * 0.27% 
over that month. With a positive expected rate of 
return, a sufficiently risk-tolerant investor would 
prefer to be in the stock market. As T increases, how­
ever, the probability of falling into ruin quickly 
increases from 1 /323 to 1. Thus, with a dogmatic prior, 
a short-run risk-tolerant investor may prefer to be in 
the stock market, whereas a long-run risk-tolerant 
investor may not.

The issue of investment horizon dependence 
also applies to diffuse priors. The trade-offs for 
a long-term investor are different from those 
of a short-term investor. Consequently, we can 
answer only the question of what the maximum 
magnitude of a disaster could have been to keep 
a risk-neutral investor in the market given a spe­
cific investment horizon. Thus, we can consider an 
investment horizon, Tf, equal to the sampling hori­
zon, Th (i.e., 323 months). The posterior expected 
rate of return is

77?
E(r)=Zf[ i (Th)]  

i=0

x{p{i,Tf)xrD(Tf) + [l-p(i ,Tf)]xrG (Tf)},

where p(i, Tf) is the probability of drawing i disasters 
within Tf investment periods. For a one-month invest­
ment, p(i, Tf) = 1/T/z. For an infinitely lived invest­
ment, p(i, Tf) = 1 (i.e., the D event would occur with 
certainty). Note that both rD and rG also depend on 
Tf, unless they are -1 or 0. Consider a case in which 
we have 323 months of historical data, the no-disaster
return is rc(Tf) = (l + r c f - l 1.0058r / - l ,  and

the disaster is the worst case, rB(Tf) = -100%.
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Given these probability assessments of disas­
ters, an investment in the (unprotected) stock market 
would have a true expected rate of return of

E(r) * 0.632x0.58% +0.232

+ ... a 0.4%.
This average rate of return would have been high 
enough to keep risk-neutral investors in the (unpro­
tected) stock market, even given the possibility of a 
complete loss.

The 1982-2012 Sample. We can now assess the 
expected rate of return as a function of the horizon 
for an investor who planned to remain in the market 
from 1982 to 2012. Figure 4 considers the historically 
observed 323 months (with CME below-the-money

put option pricing data) and what investment strate­
gies a risk-neutral investor with such an investment 
horizon might have preferred. As noted, both the 
historical sample period (Th) and the investment 
horizon (Tf) are set to 323 months.

To arrive at Figure 4's calculations, we resample 
the observed no-disaster rates of return (together 
with historical beginning-of-month put pricing) 
and "inject" a disaster of a given magnitude (x-axis) 
according to the diffuse prior and specific posterior 
in random months. That is, we inject "no disaster" 
with 0.632 probability (p = 0), one disaster with 0.232 
probability (thus drawing a disaster of magnitude 
x in each of the 323 months, with probability p = 
1/323), two disasters with 0.086 probability (p = 
1/323), and so on. The y-axis is the expected net 
equity return for an investment of 323 months.

The top blue line depicts a resampled naked- 
equity premium without disasters. It would have 
accumulated to about $8.80 with random resam­
pling.13 The true expected rate of return for the

Figure 4. Dark-Return Magnitude, Safer Strategies, and Equity Premiums

Total Expected Dollar Return

Magnitude of All Dark Rates of Return

Notes: This figure illustrates the origin of the maximum equity premium that can be attributed to disasters 
(dark returns). Resampled, if there are no dark returns, unprotected equity in the absence of disaster 
would have yielded 7.2%/year. By the thought experiment, we have been living in just such a world, 
which happened not to have experienced even one dark return—represented by the dashed line. Now, 
without loss of generality, assume that all dark returns are the same. Further assume that they occur with 
a frequency equal to the diffuse posterior distribution—-for example, 23.3% for one dark return, 8.6% 
for two dark returns, and so on. The dotted line represents the true expected rate of return. Finally, the 
put-protected equity strategies have limited losses—even if the stock market were to lose, for example, 
all its value. An equity strategy that is always put protected would yield (at least) just under $6. An 
equity strategy that invests in put-protected equities if the implied volatility is less than 50% and exits 
all financial markets otherwise would yield (at least) just over $6. Given probabilities, if the dark-event 
return were any worse than -65%, the true expected rate of return on stocks would be less than the true 
expected rate of return on put-protected stocks. No risk-averse or risk-neutral investor should purchase 
unprotected stock any longer—a non sequitur.
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naked-stock position is determined by the disaster 
probability assessment (the diffuse prior) and the 
forward-looking investment horizon (323 months), 
which creates the dotted line. For example, if the 
unknown disaster had been a one-month realization 
of -80%, the true expected payoff would have been 
about $6, or $2.80 less than the $8.80 resampled return.

The point of intersection of the put-protected 
stock position and the true expected equity premium 
fixes the disaster's maximum magnitude. If an inves­
tor had protected the stock with dynamic puts, the 
expected maximum magnitude could not have been 
worse than about -65%. If it had been worse, even 
a risk-neutral 323-month investor would have been 
better off protecting the stock with puts instead of 
holding naked stock.14

There are two more noteworthy observations 
in Figure 4. First, it illustrates nicely why the curva­
ture of the true equity premium (determined by the 
diffuse prior) does not affect the calculation of the 
equity premium's disaster component, which is the 
distance between the put-protected and the naked- 
stock positions. The static put-protected portfolio 
would have ended up with about $5.60 rather than 
$8.80, for a geometric drag of about 1.4% a year. The 
dynamic put-protected portfolio—exiting both the 
stock and the put if the implied-volatility pricing of 
the put went above 50%/year—would have ended 
up with about $6.50, for a geometric drag of about
0.8% a year. Regardless of where on the x-axis the 
average rate of return on the true naked-equity pre­
mium intersects the put-protected equity premium, 
the distance between the lines is the same.

Second, we would have calculated an expected 
rate of return of zero if one disaster of magnitude 
-85% had occurred. We would probably be confused 
even if we had seen a disaster much less worse than 
-85% (not shown in the figure): We would then fail 
to reject the null hypothesis of risk neutrality, even 
if the disaster was "only" -50%. Disaster risk pre­
mium models operate in a very narrow band, with 
an ability to lower the equity premium from the 
historically observed, seemingly large geometric 
6%-7% a year to the more model-pleasing 3%-4%, 
on the one hand, or to a nonrejectable zero equity 
premium, on the other hand. The reason is that if 
no disaster is observed, the return seems too high, 
but if just one disaster is observed, it seems too low 
and can no longer be distinguished from zero at 
conventional statistical significance levels. If it were 
ever observed, the journals would probably have 
to publish papers in which authors would have to 
design clever tests to reject the hypothesis that the 
world is risk neutral.

Conclusion
In this article, I have documented the following:

1. Over the sample period, far-below-the-money 
put options were cheap enough that dark returns 
cannot explain more than a maximum l%-2% 
component of the (6%-7% geometric) equity 
premium. This magnitude would seem to be 
nontrivial, but it is not even as large as ordinary 
sampling variation (3%).
For an investor, this finding means that a drag 
of about 1%-2%/year was the cost of escaping 
the risk of extreme crashes. At most, a third of 
the superior stock market performance in the 
modern era can be attributed to extreme dark 
events—very large black swans. The rest must 
have been earned for other reasons.

2. The cost of put protection was time varying. 
At times (e.g., in 2008), crash fear could have 
accounted for more than the average 6%/year 
realized equity premium itself.
At other times (e.g., in 2015), crash fear could not 
explain more than a 0.5% equity premium per 
year, because investors could buy such "cheap" 
crash protection.

3. The volatility smile did not steepen during the 
financial crisis of 2008. Extreme left-tail put 
protection did not increase in price more than 
at-the-money put protection.
For an investor fearful of black swans, even 2008 
was not special. All risk premiums increased, 
but black swan risk did not increase even more. 
There was nothing special about extreme dark- 
event risk in 2008.

4. Although zero dark-event disasters are the scenario 
of maximum likelihood, given the return history 
of the modem era, there is still a 37% probability 
that more black swans exist in the true population 
even under diffuse conservative priors.
For an investor, it is not irrational to believe in 
the possibility of an unprecedentedly terrible 
stock market crash, despite many decades in 
which no such crash has occurred.

5. A diffuse prior bounds the maximum magnitude 
of a disaster to about -60% to -80%. Of course, 
this is an upper bound; the crash magnitude may 
well be much more modest.
For an investor, it is irrational to believe that a 
black swan will wipe out the entire stock market 
in one fell swoop. The market pricing of options 
rejects such a belief.
Why have black swans received so much atten­

tion, in both the popular press and the academic press,
compared with, say, ordinary sampling uncertainty?
One answer may be time variation. Disaster fears and
probabilities are evidently more important in some
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years than in others. Another, more cynical answer 
is that disasters have often been conjured rather than 
measured, which gives great freedom to speculate 
about all sorts of financial phenomena: Investors 
could fear real or imaginary disasters one day but 
not the next. Without an empirical measure, given the 
extremely low incidence of black swans, such claims 
have been hard to refute. Disasters have become a 
deus ex machina—a theology of the divine to explain 
mysteries that cannot be understood by other means.

In this article, I have suggested that price data on 
far-below-the-money puts can be used to measure time 
variation in crash risk both effectively and quantita­
tively. Daily data on the cost of disaster insurance have 
been available since the mid-1980s. The data used by 
me are available as supplemental material at www. 
cfapubs.org/doi/suppl/10.2469/faj.v72.n5.3.

It is, of course, true that these data are not 
enough to disentangle time-varying fear of disasters 
from time-varying disaster probabilities, but the data 
can help us understand whether disaster models 
can explain at least some of the time variation in 
the prices of far-below-the-money put insurance. 
Although disaster models that cannot explain the 
time variation are possible, they do not seem plau­
sible to me. They would have to rely on a strange 
negative correlation between fear and probability.

I leave the reader with two crucial questions: 
Is large crash risk really not that important, or are 
put options too cheap? If not crash risk, then what 
can explain the historically high equity premium?15

An early version of this article circulated as "Some 
Quantitative Limits for Disaster Risk and Equity Premium 
Estimates" (April 2013 and June 2014). I am grateful to 
Luis Garcia-Feijoo, who invested a great deal of time, effort, 
and good judgment to improve this article, and to Barbara 
Petitt, Ian Cooper, and one anonymous referee. They all 
made this version much better than my original submission.

Editor's note: This article was reviewed via our 
double-blind peer-review process. When the article 
was accepted for publication, the author thanked the 
reviewers in his acknowledgments, and the reviewers

were asked whether they agreed to be identified in 
the author's acknowledgments. Ian Cooper was one 
of the reviewers for this article.
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Appendix A. Option-Pricing Data
This appendix describes the construction of the option­
pricing data. The original source data consisted of 1 
million put option transactions from inception in 1983 
to December 2012. The Chicago Mercantile Exchange 
(CME) data were difficult to work with, partly because 
the CME sometimes included and sometimes did not 
include quote data. The CME data also contained a 
good number of obviously incorrect transactions. I 
excluded options closer than 3 days to expiration 
(when closing-out transactions could create anoma­
lous prices) and options with more than 200 days to 
expiration (rarely traded). The median number of days 
to expiration in the remaining raw data was 35 days, 
and the mean was 45 days. I also excluded all options 
that traded before 8:00 a.m. or after 4:00 p.m.

The times and dividends were carefully matched 
to translate index and option prices into reasonable 
implied Black-Scholes volatilities.

The Original Intraday Data
The original sample, as shown in Table Al, of CME 
S&P 500 Index16 intraday data consisted of about 42 
million records, both quotes and transactions, from 
inception in 1983 to December 2012. As already noted, 
the quote data proved unreliable because the CME 
sometimes did and sometimes did not include them. 
After removing these and other obviously incorrect 
records, there were about 3 million option transactions 
(about 400 option trades per trading day) and 28 mil­
lion futures transactions. The final sample contained 
822,260 call options and 984,987 put options.

As previously noted, I excluded all option 
transactions closer than 3 days to expiration (when 
closing-out transactions could create anomalous 
prices) and options with more than 200 calendar 
days to expiration (they were rarely traded).

Table A l. Intraday Transaction Data

Options  Futures
Electronic Floor Electronic Floor

Started with 1,710,150 4,883,571 11,264,460 23,835,349
Removed canceled trades 1,710,085 4,732,868 11,264,093 23,635,275
Removed cabinet trades 1,710,085 4,719,214 11,264,093 23,635,275
Removed zero prices 1,710,085 4,719,214 11,264,093 23,629,597
Removed quotes, % of data 99% 38% 27% 18%
Actual trades left 4,388 2,908,457 8,265,482 19,459,330
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Interpolation was required to determine the 
value of the market index that matched each 
option. (This was also why it was impossible to use 
the end-of-day data: The end-of-day stock market 
price may have moved between the option trade 
and the end-of-day trade—and more so for more 
sparsely traded below-the-money options.) Thus, I 
matched each option to a prevailing-at-this-second 
index price. Unfortunately, even the index futures 
did not trade every second. Moreover, index futures 
and index options often had different expiration 
dates. Therefore, for each option transaction, I 
interpolated a prevailing index futures price from 
the surrounding nearest-in-transaction-time and 
nearest-in-expiration index futures. If more than 
five minutes had elapsed since the last transaction 
or more than five minutes were to elapse before the 
next transaction, I discarded the option transaction. 
In the final sample, the median time from the option 
transaction to the last futures trade was 5 seconds 
and the median time to the next trade was 31 sec­
onds. I limited the extrapolation in expiration timing 
to -30% and +130%.17 The median option expired on 
the same day as the near S&P futures trade.

For a risk-free rate that was applicable to the 
price of the option, I interpolated a prevailing risk­
free rate from the three-month T-bill rate and the 
one-year Treasury rate. This was done by finding the 
matching convex combination using the three-month 
T-bill (DTB3) and the one-year T-bill (DTB1YR), both 
obtained from the Federal Reserve Bank of St. Louis 
FRED database—again, limited to a range of -30% 
to 130% off the convex combination.

The S&P 500 Index does not include dividends, 
which creates a complication with respect to the 
dividends paid by the index. Although market-based 
methods show greater volatility than the historically 
prevailing dividend yields that are often used, it makes 
little difference which is used. I inferred a dividend 
yield from the spot-versus-futures price differential. 
The put itself pays off on the basis of the stock price net 
of dividends, which means that I needed to translate 
between index futures and index spot values. I started 
with an estimate of the prevailing index dividend yield 
net of the risk-free rate. One common choice is to use 
the historical dividend yield in Shiller (2005), which 
is readily available online (e.g., www.multpl.com or 
www.econ.yale.edu/-shiller/data.htm). It is also pos­
sible to use a market-implied estimate. I extracted a 
prevailing implied dividend yield net of the risk-free 
rate from the difference between the widely available 
S&P 500 NYSE end-of-day index value (4:00 p.m. EST) 
and all available index futures that traded between 2:55 
p.m. and 3:05 p.m. PST—all related by the arbitrage 
condition S0 = IQ x exp(8 -  rj). On occasion, the futures 
minus spot difference suggested a negative dividend

yield. Because investors cannot be forced to pay in such 
cases, I Winsorized the net dividend yield at zero.

Figure A1 plots the left side of the well-known 
volatility smirk. The average implied volatility 
was about 3% higher than the prevailing histori­
cal volatility (not shown). Put options that were 
more below the money traded at higher implied 
volatilities. Figure A1 suggests that an average 
implied-volatility estimate of 32.5% (15% above the 
prevailing volatility) would be on the high side. 
However, options that were much closer to or fur­
ther from -15% moneyness influenced the implied- 
volatility estimates. Thus, Figure A2 focuses only 
on options that were closer to the -15% target. It 
plots the prevailing volatility on the x-axis and the 
average implied volatility of -13% to -17% money­
ness options on the y-axis. There is a regression 
effect: The implied volatilities suggest that actual 
volatility was expected to mean-revert. Even when 
the annualized historical volatility was as low as 
10%, put options that were 15% BTM still traded at 
about 20% implied volatility (i.e., 10% above pre­
vailing). When historical volatility was high (e.g., 
40%), this difference shrank to about 5%.

The Conditional Probability of a 
Disaster
Figure A3 illustrates a discretized form of the popu­
lation distribution, with T equally likely probability 
areas at different locations (specific equity premium 
magnitudes). To help with the intuition, consider the 
case in which the true underlying density function is 
normal. Divide it into 10 segments, each containing 
10% probability density.18

Now, sample from this distribution T = 10 
times. The probability of sampling (one or more 
times) from the leftmost bin—which turns out to be 
realizations of —1.3 or lower in the case of a normal 
distribution—is

r i Y°Wl- 1--------- « 65%.

The probability of sampling (one or more times) 
from the two leftmost bins—which turn out to be 
realizations of -0.9 or lower in the case of a normal 
distribution—is

September/Qr.tober P01 fi w\m\m rfannh.Q nrn 95
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Figure A1. Implied-Volatility Smirk of Index Put Options

A. Implied Volatility as a Function of Moneyness
Implied Log Volatility

Counts

1
14,211 
13,323 
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4,442 
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Moneyness

B. Implied Volatility Net of Prevailing Historical Volatility as a Function of Moneyness
Implied Volatility Net of Prevailing

-0.20 -0.15 -0.10 -0.05 0
Moneyness

Notes: The x-axis is the moneyness; the y-axis is the implied Black-Scholes volatility. Unlike in the previous figures, each option (and not 
each transaction day) represents one observation. Panel B subtracts the prevailing three-month historical volatility from the Black-Scholes 
implied volatility. This figure depicts the left side of the volatility smirk; 15% BTM puts were priced at about 30% implied volatility.

Naturally, the analogous probability of drawing 
an impossible observation (i.e., no bin) is 100%.

The normal distribution is just for illustration. 
Figure A4 shows an alternative true population dis­
tribution in which there are two very negative possible 
realizations, each with a probability of 5%, and nine 
other bins, each containing a probability mass of 10%.

The same probability calculations apply, except 
that the leftmost bin now contains all realizations below 
-4 (as drawn).19 The probability of sampling the lowest 
10% probability value at least once in 10 draws is 65%.

A remarkable property is that these probabili­
ties are roughly invariant to the number of samples 
drawn because (l-K/T)T~e~K for T/K » 5 .  Given 
whatever (lowest) realizations have been seen in the 
sample thus far, the probability that K = 1 more prob­
ability mass (to the left of this lowest realization) that 
was not drawn is the same regardless of whether 10 
or 10,000 realizations have been observed, as shown 
in Figure A5. That is, if we had sampled 10 draws 
and divided the true distribution into 10 possible 
(equally likely) population areas, the probability of
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Figure A2. Implied Volatilities of 15% BTM Index Put Options vs. Historical 
Volatility

Implied Log Volatility

---------  Average Daily Volatility • Prevailing Historical Volatility

Notes: This figure depicts the average daily volatility for all index puts with moneyness between -13% 
and -17%, plotted against the prevailing historical volatility. Implied volatilities indicate volatility mean 
reversion.

Figure A3. Equal Probability Slices of a Gaussian Normal Distribution
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Figure A4. Equal Probability Slices of an Arbitrary Distribution
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Figure A5. More Slices of Gaussian Normal Distribution
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not having seen any particular interval (specifi­
cally, the worst) would be 36.8%. If we had sam­
pled 100 draws (e.g., from a normal distribution 
in which we assigned the left bin all numbers less 
than -2.36, or 1% of the mass), the probability of 
not having seen such a number would be 36.8%.

The probability of not sampling the leftmost 
bin is

36.8%.

It is somewhat counterintuitive that this prob­
ability does not depend on T (i.e., on whether 10 
samples or 100 samples have been drawn), but it is 
a direct consequence of fair sampling. In our appli­
cation, in contrast to the usual binomial formula 
application, p = K/T  decreases with the number of 
samples drawn because the number of sample draws, 
T, also informs us about p. Even as we obtain more 
and more sample draws, we are interested not in the 
probability of not having seen the lowest k% quantile 
realizations but, rather, in the probability of not hav­
ing seen the lowest K realizations. As T increases, 
the expected minimum draw value decreases and 
the probability mass within each segment decreases.

Notes
1. Mehra and Prescott (1985) raised the puzzle; Rietz (1988), Taleb 

(2004), and Barro (2006) formulated the "left-tail" answer. 
There is also an active macrofinance economics literature 
about disasters (see, e.g., Gourio 2012; Wachter 2013; Gao and 
Song 2013; Kelly and Jiang 2014; Kozeniauskas, Orlik, and 
Veldkamp 2014; Orlik and Veldkamp 2014; Chen, Dou, and 
Kogan 2015). However, none of them used put option prices 
to bound disaster risk. Seo and Wachter (2015) modeled time 
scales of disaster risk from implied volatility curves. Coval, 
Jurek, and Stafford (2009) considered CDX bonds as economic 
catastrophe bonds, which they viewed as overpriced invest­
ments in the left tail of the market. Rosenberg and Engle (2002) 
found time variation in an empirically estimated kernel for 
1991-95 option-pricing data.

2. See http://m ba.tuck.dartm outh.edu/pages/faculty/ken. 
french/data_library.html.

3. Although such puts tended to have high Black-Scholes vola­
tility, they still tended to have very low prices, which is the 
primary aspect in this case.

4. The implied-volatility data, albeit without support, are avail­
able as supplemental material at www.cfapubs.org/doi/ 
suppl/10.2469/faj.v72.n5.3 and my website (http://ivo-welch. 
info).

5. This fact does not apply to stock return volatility! Nowotny 
(2011) examined the Great Depression, in which volatility begat 
more volatility and/or possibly lower future expected rates of 
return. The protection cost in our example is overstated. The 
put would also have protected and paid off on rare occasions 
in the sample itself. Even under ordinary near-diffusion risk, 
in the absence of catastrophes, it would sometimes pay off. 
The put would not, however, protect against a new regime in 
which the expected rate of return would be very low for years 
to come.

6. The implied volatilities ranged from about 13% to about 77%, 
with a median of 26.5%, a mean of 28%, and a standard devia­
tion of 8%.

7. Orlik and Veldkamp (2014) used nontail realizations to model 
time-varying left-tail disaster probabilities, leaning strongly on 
their distributional assumption. One could test whether their 
variation in implied disaster probabilities coincides with the 
variation in input prices.

8. One could also consider strategies that protect the stock only 
if puts are cheap and that remain in the stock otherwise. Such 
strategies are still safer than the always-in-stock strategy. 
For example, an investment strategy that protected against 
disasters only when the put's implied-volatility price was less 
than 20% and that remained unprotected in the market not 
only was safer but would also have yielded average rates of

return of about 6%. Unfortunately, the key assumption that 
disasters were i.i.d. (independently and identically distrib­
uted) draws would no longer be reasonable: Perhaps disaster 
probabilities were higher when the implied volatilities were 
higher, and thus a dynamic put exit strategy cannot deliver 
a convincing bound. Until we start observing some disaster 
events, we cannot assess whether dark-event disasters are 
more frequent when put options are priced higher than 30% 
volatility. Thus, we cannot determine whether a 1% or 2% drag 
is more plausible.

9. My CME dataset ended in October 2012 and thus did not 
include 2015 data. In mid-2015, the cost of protection remained 
low:
On 16 April 2015, the S&P 500 stood at 2,105. A put option 
with a strike of 1,800 expiring on 8 May 2015 (three weeks) 
had an ask quote of $0.35 (bid of $0.25) for an implied volatility 
under 20%. This put cost $0.00017 per $1 of protection. With 
17 three-week periods a year, if the price of BTM volatility 
protection remained stable, the prevailing put price implied 
a cost drag of about 17 x 0.35 / 2,105 » 0.2% a year.
On 20 April 2015, the S&P 500 stood at 2,086.20. A put option 
with a strike of 1,600 expiring on 15 July 2015 (85 days) had 
a last transaction of $0.70, for an implied volatility of 33%. 
Rolling over 85-day contracts 4.3 times covers the year. Thus, 
the cost of protection at a strike of 67% of the stock was $3 a 
year, or about 0.15%.
On 24 April 2015, the S&P 500 stood at 2,118 and a June 2016 
option with a strike price of 35% below the money (1,375) 
cost $22.80, or about 1% of the index. Such a put would even 
protect against repeated gradual stock market declines. In 
2015, disaster protection was very cheap, though not in a 
Black-Scholes price sense. Indeed, these below-the-money 
index put options are still too expensive in the Black-Scholes 
sense; they are cheap in the "protection" sense.

10. The "diffuse catastrophe prior" is the exact analog of a 
Bayesian regression prior in which the underlying coefficient 0 
is an improper uniform distribution, and sampling then yields 
coefficient posterior means that are identical to those obtained 
in a classical regression (Zellner 1976). Thus, equivalent dif­
fuse prior assumptions can be viewed as underpinning every 
reported classical regression analysis. Here too a different prior 
would yield different coefficient estimates and confidence 
intervals.

11. It makes no sense to generalize to a uniform continuous prior 
on the probability, because there needs to be a nonzero prob­
ability mass on zero disasters.

12. This "worst admissible magnitude" analysis is akin to the 
bounds in Hansen and Jagannathan (1991).
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13. The expected compound simulated payoff is higher in the 
simulation than in the data because of compounding with 
resampled monthly equity premium draws. In this example, 
the investment would grow by 7.2%/year, to $7.80 over a 
hypothetical 323 months. The effect is analogous to the dif­
ference between the arithmetic and the geometric mean rate 
of return.

14. Another way to calculate the magnitude is to compare the 
expected rate of return on the put (the probability that a put 
will pay off in a disaster times the disaster's magnitude) with 
its monthly cost of rolling over.

15. In my view, good candidates are fortunate ex post coincidence 
(e.g., Jorion and Goetzmann 1999), declining risk premiums 
(e.g., Fama and French 2002), and increasing stock market
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