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Abstract

This paper compares the forecasting and hedging performance of 11 market beta estima-

tors across 53 international stock markets in 6 geographical regions. The Welch (2022)

age-decayed slope-winsorized beta estimator produces the highest R-squareds in predict-

ing future realized OLS betas in 45 markets and is always within the top 3 performers.

It also forecasts future realizations of its competitors well and performs the best when

hedging market risk exposures in 42 markets. On the practical side, it significantly out-

performs commonly available market betas on Bloomberg, Yahoo! Finance, and Google

Finance. Market participants can greatly improve their beta estimations in both devel-

oped and emerging markets with this easy-to-implement slope-winsorized beta estimator.
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This paper evaluates the predictive and hedging performance of 11 market beta es-

timators in 53 markets around the globe. Candidates participating in the horse race

include the standard daily OLS beta (bols), the Vasicek (1973) Bayesian beta, the Levi

and Welch (2017) double-shrinkage beta (blw), the Blume (1971) adjusted beta, the Dim-

son (1979) synchronicity-adjusted beta, the Frazzini and Pedersen (2014) hybrid beta,

the Welch (2022) slope-winsorized beta (bsw), and its age-decayed variant (bswa). Most

of the betas above have been tested using US stock data, but the external validity of

these beta estimators is unknown. Good empirical performance in a single market does

not guarantee equal success in another market. By running a horse race in 53 interna-

tional markets across 6 geographical regions, my paper contributes to the literature on

estimating market betas and international finance, offering a practical guide for choosing

beta estimators across developed, emerging, and frontier markets. In brief, my empirical

results show good external validity of bswa. It is the best estimator of market beta yet.

I consider three criteria to compare the beta estimator’s predictive performances.

First, I run pooled predictive regressions of future realized daily OLS betas (Andersen

et al., 2006) on beta estimators and compare their R-squared coefficients. For 12 months-

ahead predictions, the bswa estimator outperforms other beta estimators in predicting

future realized bols in 45 markets and consistently ranks in the top 3 across 53 markets.

Moreover, bswa also performs well in forecasting bols over longer horizons and the future

realizations of other beta estimates. Second, I investigate which beta estimator offers the

smallest root mean squared error (RMSE) in forecasting future realized daily OLS betas.

This test is equivalent to the regression RMSE by restricting the intercept and the slope

coefficients to be 0 and 1 in the first test, respectively. The Levi and Welch (2017) double-

shrinkage method shines in this test, as blw ranks first in producing the lowest RMSEs in

33 markets, whereas bswa ranks second with the smallest RMSEs in 19 markets. Based

on the Borup et al. (2023) sequential elimination rule, bswa and blw remain in the best

sets of beta predictors 27 and 41 times according to their RMSEs, respectively. Third,

if the future realizations of bols proxy for stocks’ exposures towards market risk, a less

biased beta estimator should provide better hedging performance. Daily stock returns

hedged by bswa estimates in the previous months have the lowest standard deviations

in 42 markets, outperforming the hedging performance of blw except for 11 out of 53

markets. Market-hedged stock portfolios with bswa, bsw, or blw have similar standard
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deviations. Overall, the optimal hedging ratios under slope-winsorized betas (bsw, bswa)

and double shrinkage betas (blw) are more effective in reducing portfolio variances than

the standard OLS betas.

Most users do not estimate market betas with data by themselves. Instead, they

usually obtain individual stocks’ beta estimates from popular sources such as Bloomberg,

Yahoo! Finance, and Google Finance. For instance, when a user searches a stock ticker

on the Bloomberg terminal, it reports the Blume (1971) adjusted OLS weekly beta (Beta

vs SPX for US stocks) estimated from the previous 103 weeks of price returns on a

company’s equity profile page. In common practice, users select the sampling period and

data frequency from the terminal’s historical beta page to obtain raw and Blume (1971)

adjusted beta estimates for securities. Unlike the customizable Bloomberg service, Yahoo!

Finance and Google Finance only provide the latest beta estimates for the past 60 months.

In particular, the Yahoo! Finance website reports Beta (5Y Monthly) based on the

price returns of the stock and the main market index over the past 60 months (OLS

monthly betas). Beta estimates acquired by the GoogleFinance(“ticker”, “beta”)

function on the Google Sheets application are equivalent to those available on Yahoo!

Finance. With the past 60 months of price returns, raw Bloomberg betas are practically

identical to those available on Yahoo! Finance and Google Finance. Although these

platforms are convenient, I replicate their 5-year monthly OLS betas (bmols) and the 5-

year monthly Bloomberg adjusted betas (bmblm) with international data and show that

they fare poorly in predicting future realized daily OLS betas (bols).1

Remarkably, even when market professionals estimate market betas by themselves,

some sophisticated beta estimation methods proposed in the literature do more harm than

good. In particular, the Dimson (1979) synchronicity adjustment and the Frazzini and

Pedersen (2014) hybrid approach often produce beta estimates with unstable predictive

performances that are inferior to bols over time, echoing Han (2022); Novy-Marx and

Velikov (2022); Welch (2022). Simply put, bfp and bdim are not suitable for forecasting

1Figure A7 in the supplemental online material provides a Python program for replicating beta esti-
mates from Yahoo! Finance and Google Finance. For stocks in the US, Bloomberg, Yahoo! Finance, and
Google Finance treat the S&P 500 index as the market factor, and they estimate betas with price returns.
In contrast, I estimate bmols and bmblm with excess returns derived from CRSP’s holding period returns
(dividend included) for individual stocks and the value-weighted market portfolio. Therefore, there are
negligible differences between my beta estimates and Bloomberg betas. Following Bloomberg’s defini-
tions, I also replicate raw and adjusted weekly OLS betas with Friday to Friday returns. These weekly
betas typically perform slightly better than their monthly variants but are inferior to betas estimated
from daily data.
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betas. Furthermore, betas estimated from monthly data generally underperform their

counterparts estimated from daily data. Practitioners should not use these beta estimators

in making business decisions.

Beyond the 11 beta estimators considered in the main article, the additional analysis

in the supplemental online material reveals that my findings are robust to a broader set of

sophisticated beta estimators that require stricter data requirements and more computing

power. The bswa estimator generally outperforms betas estimated from different sampling

windows, data frequencies, shrinkage methods, and estimation procedures. Relaxing the

data requirements, I extend my analysis to 26 additional international markets. Here,

bswa has the highest R-squared values 16 times and belongs to the best sets of beta

predictors based on RMSEs 20 times. More importantly, bswa performs best not only in

mature markets such as the US, Japan, the UK, France, and Canada but also up-and-

coming markets such as China, India, and South Korea. In other words, bswa, on average,

performs better than other beta estimators in over 80% of global equity by market value.

This article therefore recommends using the Welch (2022) age-decayed slope-winsorized

bswa estimator with daily stock returns also for international markets. On the one hand,

bswa is simple to implement with merely daily stock returns and it performs well across

different market types. It has the same data requirement of 1-year daily observations as

bols and accounts for all available data with exponential decay only up to the point of

estimation. On the other hand, although the Levi and Welch (2017) blw estimator is

on par with bswa in many markets, blw users must define their prior shrinkage weights

and targets for stocks of different sizes. The empirical performance of blw thus depends

relatively more on its users’ familiarity and subjective judgments towards a particular

market. Furthermore, the performance of double-shrinkage betas may benefit from the

hindsight of knowing the full sample average beta for certain groups of stocks. On the

contrary, bswa users only need to think that reasonable beta estimates should fall between

−2 and +4. They also do not need to know about the size of their target stocks relative

to the entire stock market. Hence, bswa is a superbly easy-to-compute tool for estimating

risk in markets unfamiliar to business managers or investors.

My evaluation of beta estimators focuses on their ability to predict market risk ex-

posures and hedging. It is however useful to discuss briefly some capital budgeting ap-

plications. Some practitioners apply the CAPM with a market beta to measure the cost
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of capital. However, even in the CAPM, a firm’s capital cost is jointly determined by its

market beta and the equity risk premium, leading to complications with their estimations

and time-varying parameters. Estimating the cost of capital with the CAPM also ignores

other sources of systematic risk premium (Merton, 1973; Ross, 1976). For example, in a

US court case on company valuation,2 the valuation expert for the petitioners put forward

a Bloomberg historical beta of 1.32, while his counterpart for the respondent advocated

the Bloomberg adjusted beta of 1.17. Neither is the “best” practice any longer.3

The remainder of this paper proceeds as follows. Section 1 recaps the methodologies for

estimating market betas. Section 2 describes the sample selection and data requirements.

Section 3 discusses the empirical performance of different beta estimators in forecasting

future realized betas and hedging. Section 4 concludes my findings.

1 Beta estimators

This section summarizes the estimation procedures of 11 beta estimators selected in

the horse races. Unless otherwise specified, estimators using daily returns employ rolling

windows of 252 daily returns with at least 100 data points per estimation and a minimum

of 5 trading days during the month of the estimation. For estimators using monthly

returns, there must be 60 observations per estimation.

bols: The daily least-squares beta, b̂olsi,t, is estimated from ri,d = αi + bolsi,t · rm,d + εi,d

using rolling windows of 252 daily excess returns prior to the end of month t.

bvck: The Vasicek (1973) Bayesian shrinkage beta estimator takes the functional form

of b̂vcki,t =
σ2

b̂olst

σ2

b̂olst
+se2

b̂olsi,t

· b̂olsi,t +
se2

b̂olsi,t

σ2

b̂olst
+se2

b̂olsi,t

· b̂olst, where se
b̂olsi,t

is the standard

error of stock i’s bols estimate. b̂olst and σ
b̂olst

are the cross-sectional average and

standard deviation of every stock’s bols estimated in month t, respectively.

2Global GT LP v. Golden Telecom, Inc., C.A. No. 3698-VCS (Del. Ch. Apr. 23, 2010).
3The judge decided on an alternative beta estimate, ruling out the suggestions from both parties.

The judge’s beta assigned 2/3 weight to the Bloomberg historical beta of 1.32 and 1/3 weight to the
industry average beta of 1.24, resulting in a beta of 1.29. The court also rejected the MSCI Barra’s
proprietary predictive beta. In addition, there were disagreements on the equity risk premium estimate
and the judge agreed with the 6% proposed by the expert for the petitioners. Therefore, the court may
not recognize the raw historical beta or the Bloomberg adjustment as the standard “best” practice in
valuation lawsuits. Legal and valuation professionals should acquaint themselves with the latest industry
and academic valuation literature to defend their beta and equity risk premium estimates.
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bdim: The Dimson (1979) aggregated coefficients method adjusts for biases in estimating

betas of infrequently traded stocks. It first estimates the contemporaneous beta, the

lagged beta, and the lead beta from ri,d = αi+bconti,t ·rm,d+blagi,t ·rm,d−1+bleadi,t ·

rm,d+1+εi,d using prior daily returns until month t. The synchronicity-adjusted beta

is b̂dimi,t = b̂conti,t + b̂lagi,t + b̂leadi,t.

blw: Levi and Welch (2017) advocate using the double-shrink beta estimator (blw),

b̂lwi,t = 0.75 · b̂vcki,t + 0.25 · targeti, to estimate market betas. The shrinkage

target of an individual stock depends on its market cap.4

bsw: Welch (2022) proposes the slope-winsorized beta estimator (bsw), which bounds

daily stock excess returns by rswi,d ∈ (−2 · rm,d, 4 · rm,d). In effect, extreme positive

(negative) values in observed daily excess returns on day d are set to the maximum

(minimum) of the multiples of daily market excess return, −2 · rm,d and 4 · rm,d, on

day d. The resulting beta estimate is b̂swi,t =
ĉov(rswi,d,rm,d)

v̂ar(rm,d)
.

bswa: Welch (2022) shows that imposing age decay on daily observations further en-

hances the predictive performance of bsw. The weight of the nth daily observation

is wn = (1 + 2
252

)n in the weighted least squares (WLS) estimation. Effectively, the

age-decayed slope-winsorized beta estimator (bswa) captures time variations in beta

by over-weighting recent returns and under-weighting old ones.

bfp: Frazzini and Pedersen (2014) use rolling 1-year windows of 1-day log returns for

estimating volatilities and rolling 5-year windows of overlapping 3-day log returns

for estimating correlations. The hybrid beta estimate is then shrunk towards 1 by

b̂fpi,t = 0.6 · ρ̂3-dayi,m,t ·
σ̂1-day
i,t

σ̂1-day
m,t

+ 0.4 · 1.

bmols: The monthly OLS beta variant is obtained by running rolling regressions with

the previous 60 months of excess returns at the end of month t.

bmvck: The monthly Vasicek (1973) beta uses monthly returns to estimate bmols and

cross-sectional moments of bmols across stocks.

4As in Levi and Welch (2017), I use targeti = 1 for non-micro stocks while targeti = 0.75 and
targeti = 0.5 for micro and nano stocks, respectively. In line with Jensen et al. (2022), I use percentile
cutoffs of NYSE stocks’ market capitalization to classify all stocks. For international markets, non-micro
stocks have market equities above the 20th percentile of NYSE stocks’ market capitalization, micro stocks’
market equities are between the 20th and 1st percentile, and nano stocks’ market equities are less than
the 1st percentile. The blw estimator cannot apply to stocks missing market equities.
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bmblm: Due to mean-reverting tendencies in monthly OLS beta estimates over time,

Blume (1971) suggests adjusting the current betas by the regression coefficients

estimated from regressing the current beta estimates on past beta estimates. The

adjusted monthly OLS beta follows b̂mblmi,t = 2
3
· b̂molsi,t + 1

3
· 1.

bmlw: The monthly double-shrink beta is b̂mlwi,t = 0.75 · b̂mvcki,t + 0.25 · targeti with

the same market cap dependent targets for bmvck as in blw.

2 Data

2.1 Sample description

I gather stock returns, index returns, and firm sizes from the CRSP and the Compustat

North America databases for US and Canadian ordinary stocks and the Compustat Global

database for international ordinary stocks. For each market, the market factor is the

value-weighted excess returns of all existing stocks in that market during the estimation

period. To ease comparison, I convert local currency returns in global markets into US

dollar (USD) returns by their respective daily and monthly foreign exchange rates on

Compustat. These USD returns are then subtracted by the US treasury bill rates to

obtain excess returns. This study focuses on estimating stock betas in the local market.

Because exchange rate fluctuations between the USD and the local currency affect both

local stock returns and local market portfolio returns equally, beta estimates in USD and

local currency are highly similar. Following Jensen, Kelly, and Pedersen (2022), there

must be only one monthly observation per stock. I only consider primary listed common

stocks on their respective main exchanges. I further remove extreme stock daily returns

outside the range of ±99% to mitigate data errors.5

The initial data set contains stock market data from 79 markets around the globe.

About 33% of them have limited observations. Hence, I further restrict the sample to

markets having at least 50 listed companies with 5 years of price history and a market

index with at least 5 constituents. The resulting sample consists of 53 markets across 6

geographical regions.6

5These extreme outliers are rare in the sample. They are likely entry errors resulting from omitted
corporate events such as stock splits and reverse stock splits. This filter has little effect on beta estimates
but mitigates distortions in beta-hedged returns.

6In the supplemental online material, I provide additional findings for 16 markets that do not meet
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Africa (4 markets): Morocco, Nigeria, Tunisia, and South Africa.

Asia Pacific (17 markets): Australia, Bangladesh, China, Hong Kong, Indonesia, In-

dia, Japan, South Korea, Sri Lanka, Malaysia, New Zealand, Pakistan, Philippines,

Singapore, Thailand, Taiwan, and Vietnam.

Europe (19 markets): Austria, Belgium, Switzerland, Germany, Denmark, Spain, Fin-

land, France, United Kingdom, Greece, Italy, Netherlands, Norway, Poland, Portu-

gal, Romania, Russia, Sweden, and Turkey.

Middle East (7 markets): United Arab Emirates, Egypt, Israel, Jordan, Kuwait, Oman,

and Saudi Arabia.

North America (3 markets): Canada, Mexico, and United States.

South America (3 markets): Argentina, Brazil, and Chile.

The sample has a diverse mix of MSCI market classifications, including 22 developed

markets, 19 emerging markets, 10 frontier markets, and 2 standalone markets. Table

1 reports their ISO 3-digit country codes, MSCI market classifications, stock counts,

numbers of monthly beta observations, and sampling periods by regions.7

[Insert Table 1 here: Sample Summary]

For most developed markets, data are available in the early 1990s on Compustat

Global, whereas the USA sample dates back to the 1930s on CRSP.8 Europe has the

highest number of developed markets, followed by the Asia Pacific and North America.

Emerging, frontier, and standalone markets tend to have shorter sampling periods. Across

developed markets, the US, Japan, and the UK have the highest numbers of individual

equity issuers. For emerging markets, large Asian markets, including China, India, and

Korea, have over 2,000 unique firms, reflecting their rapidly growing economies and fi-

nancial sectors.

my data requirements. My initial sample of 79 markets excludes 14 out of 93 markets covered in Jensen,
Kelly, and Pedersen (2022), such as Iran, Uganda, and Zimbabwe, because there is insufficient data in
these markets to estimate all 11 beta estimators for the horse race.

7The market classification follows the MSCI’s 2022 Global Market Accessibility Review published on
June 9, 2022. MSCI monitors market conditions regularly, and market reclassification can occur. A
summary of a report is available at https://www.msci.com/our-solutions/indexes/market-classification.

8This study includes all available stocks in the US, while Welch (2022) focuses on the performance of
beta estimators among the largest 1,000, 2,000, or 3,000 US stocks.
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2.2 Summary statistics

Table 2 gives the pooled summary statistics of 11 beta estimates by 6 geographical

regions. There are three salient features: First, betas estimated with rolling windows of

252 days (bols, bvck, blw, bdim, and bsw) or age-decayed expanding windows (bswa) have

lower pooled means than betas estimated with 5-year rolling windows of daily data (bfp)

or monthly data (bmols, bmvck, bmblm, and bmlw). The value-weighted market portfolio

of all stocks has a market beta of 1. However, thinly traded stocks (Dimson, 1979) and

small stocks (Levi and Welch, 2017) often have beta estimates below 1, explaining why

some of the sample equal-weighted beta averages are less than 1. Second, betas estimated

from daily data tend to have larger pooled dispersion than estimates from monthly data.

Third, shrinkage adjustment and slope-winsorization reduce the pooled dispersion in beta

estimates relative to their OLS counterparts. The bdim estimates have the highest pooled

variations in all 6 regions.

[Insert Table 2 here: Summary Statistics of Beta Estimates by Geographical Regions]

Betas estimated using the same estimation windows have similar summary statistics.

To better understand their differences, the supplemental online material Table A2 also

presents the pairwise root mean squared differences across all 11 beta estimators by geo-

graphical regions. Using bols as the benchmark, its differences with bvck, blw, and bsw

are in the moderate range of 0.043 to 0.215 across regions. These differences are small

because bvck and blw are adjusted bols towards fixed targets while bsw equals bols if

stock returns never exceed the slope winsorization limits. Because of the expanding sam-

pling windows with exponential decay, bswa differs slightly from 1-year block-sampled

bsw with distances between 0.067 and 0.102. In contrast, bdim, bfp, or estimators that

use 5-year block sampling of monthly data produce beta estimates that are more distinct

from bols, with distances ranging from 0.167 to 0.593. Across regions, the North America

has the largest average distance between bols and other beta estimators. Stock markets

with more listed companies tend to exhibit greater heterogeneity among beta estimates.
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3 Results

3.1 Predicting 12 months-ahead bols

In line with Welch (2022), I evaluate the forecasting performance of beta estimator

based on both its ability to predict the future realized bols and its ability to predict the

future realizations of other beta estimators. The pooled predictive regression takes the

form of

bi,t = γa + γb · b̂i,t−l + εi,t. (1)

In particular, bi,t are the ex-post predicted betas, b̂i,t−l are the ex-ante predictor betas,

and l is the prediction horizon. If b̂i,t−l predict bi,t perfectly, the pooled estimate of

γ̂b equals 1 while γ̂a equals 0. When evaluating the forecasting performances of beta

estimators, the first benchmark is to consider the R-squared from the pooled regression,

R
2

=
[

ˆCorr(bn,y, b̂n,y−l)
]2

, which is equivalent to the squared value of the estimated

correlation between bi,t and b̂i,t−l. The R-squared benchmark evaluates the goodness-

of-fit of the predictive regression. Welch (2022) suggests that biases in beta estimates

do not affect the R-squared measure. Moreover, Jegadeesh et al. (2019) show that the

average correlation between estimated betas and true betas is approximately the square

root of the correlation between betas estimated in adjacent months. A higher R-squared

from predicting the OLS proxy of true beta with a beta estimator thus implies a higher

explanatory power of the beta estimator on the true unknowable beta. For the univariate

predictive regression, the R-squared is the same as the square of the correlation between

bi,t and b̂i,t−l. Therefore, I use Fisher’s Z-test for the difference of correlations to examine

whether the R-squared of a regression is significantly different from the highest R-squared

beta observed in each international market.

However, if one wants to find a beta estimator for hedging the systematic risk exposure

as proxied by the future realized OLS beta, biases in beta estimators can potentially lead

to over(under)-hedging. Therefore, the second benchmark is to compare the root mean

square errors (RMSEs) across different beta estimators

RMSE =

√
1

N · T
∑
n

∑
t

(bn,t − b̂n,t−l)2. (2)

This RMSE metric directly compares a beta estimator and the future realized OLS beta,
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which is identical to the restricted regression RMSE by imposing γa = 0 and γb = 1 to

Equation 1. To test whether the RMSEs of different beta estimators are significantly

different from one another, I apply the Borup et al. (2023) algorithm to find the best set

of beta predictor(s) by eliminating the inferior beta estimator(s) sequentially. Specifically,

the algorithm uses a multivariate version of the Giacomini and White (2006) (GW) test

to compare multiple RMSEs from different predictors. Given a set of predictors, the

multivariate GW test eliminates one predictor with the worst RMSE from the set at a

time until the null hypothesis of equal predictive ability across multiple predictors can no

longer be rejected. Like the Hansen et al. (2011) model confidence set (MCS) framework,

the surviving predictors have statistically indistinguishable forecasting abilities when more

than one predictor remains in the best set.

Table 3 reports estimates of γ̂a, γ̂b, and R
2

from Equation 1, and the RMSEs of

Equation 2 with bolsi,t in month t as the dependent variable and betas estimated in

month t− 12 as the independent variable in 6 geographical regions. Each column reports

the regression results of a beta estimator. To improve readability, the highest R
2

and the

smallest RMSEs are in bold, indicating the best beta estimator for each region.9

[Insert Table 3 here: Predicting 12 Months-Ahead Realized bols by Geographical Regions]

The bswa estimator yields the highest R
2

in 5 out of 6 geographical regions. Although

blw has a higher R-squared than bswa in Africa, they are statistically different only at the

10% significance level. Based on the RMSE metric, bswa performs best in the Asia Pacific,

the Middle East, and the North America, while blw beats bswa in the remaining 3 regions.

Estimates of γ̂b are usually below 1.0 in pooled predictive regressions, revealing that beta

estimates often overshoot the future realized bols. That said, the top 3 performing beta

estimators, bswa, blw, and bsw, tend to have γ̂b closer to 1 than other estimators in most

cases. While the R-squared coefficients measure how correlated the beta estimate and the

future realized bols are, they do not tell us whether the beta estimates are biased. For

example, if a beta estimate is exactly one-half of its future self, the R
2

from the predictive

regression is 1, implying a perfect positive correlation.10 However, such a beta estimate

9I use Newey and West (1987) standard errors with 12 lags to correct for serial correlations and
heteroskedasticity in the error terms of overlapping monthly observations. For robustness, I also compute
Cameron et al. (2011) standard errors clustered by firms and years. These standard errors for γ̂a and
γ̂b are typically between 0.01 and 0.05. To save space, I only report them in the supplemental online
material’s market-level tables.

10Let 1
2bn,t = b̂n,t−l, their correlation is Corr(bn,t, b̂n,t−l) = Corr(bn,t,

1
2bn,t) =

√
R2 = 1.
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will also vastly underestimate the market risk and the optimal hedging ratio.

The market-level analysis involves running 583 pooled predictive regressions for 11

beta predictors in 53 markets. Table 4 shows the rankings of beta estimators by their

predictive regression R-squareds and direct comparison RMSEs across 53 markets. For

each pair of rankings, the R
2

ranking (in italics) is on the left and the RMSE ranking

is on the right. In 46 markets, bswa ranks first in terms of R
2
. It is also consistently

among the top 3 performers. Around the world, bswa performs the best in predicting 1

year-ahead bols, followed by blw and bsw. Moreover, the great predictive performance of

bswa is universal across developed, emerging, and frontier markets. Looking at R
2
, blw,

bsw, and bswa are the top 3 performers in the African continent, outperforming other

estimators by clear margins. While blw generally performs better than bswa in African

frontier markets, bswa has the highest R-squared in emerging ZAF. In the Asia Pacific

region, bswa ranks first in 15 out of 17 markets. The two exceptions are bols in LKA and

blw in VNM, with bswa being second in both markets. As for Europe, bswa dominates

other beta estimators in 17 out of 19 markets except for POL and ROU. The performance

gap between blw and bswa in POL is negligible, but bswa is a little behind bmlw and blw

in ROU. Across the Middle East, bswa has the highest R
2

in 6 out of 7 markets and is a

close second after blw in JOR. For North America and South America, bswa is the clear

winner under the R-squared metric in all 7 markets. Generally speaking, betas estimated

from daily observations are superior to those estimated from monthly observations in

predicting future bols realized 12 months later. The only exception is ROU, with bmlw

being marginally better than blw and bswa.11

[Insert Table 4 here: Beta Rankings of Predicting 12 Months-Ahead Realized bols in 53 Markets]

As for RMSEs, bswa is consistently among the top 3 performers across 53 markets.

Nonetheless, blw performs better than bswa for being first in 33 markets. The bswa

estimator comes second as the top performer in 20 markets, while the bsw estimator

remains in the third position. By sequentially eliminating the beta with the highest

RMSE in a market, the Borup et al. (2023) algorithm indicates that bswa and blw belong

to the best sets of beta predictors in 27 and 41 markets, respectively. Simply put, blw

performs better than bswa in terms of the RMSE metric, but the differences between

them are usually small.

11For detailed results, please refer to Table A3 of the supplemental online material.
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3.2 Relative predictive performance of betas over time

The pooled predictive regressions do not account for time-varying predictive perfor-

mance in beta estimators. Following Welch (2022), I run year-by-year (December to

December) predictive regressions in predicting 1 year-ahead future realized bols to ob-

tain the time series of time-varying regression RMSEs for different beta estimators in

each annual cross-section. This approach is similar to the Fama and Macbeth (1973)

cross-sectional regression, which accounts for time fixed effects (Petersen, 2012).

Figure A2 of the supplemental online material plots the year-by-year relative perfor-

mance of beta estimators in 53 international markets. In most markets, bswa outperforms

other estimators most of the time. Whenever the difference between the predictive regres-

sion RMSEs of a beta estimator and the bols benchmark is positive, that beta estimator

outperforms the bols estimator, and vice versa. All beta estimators exhibit variations

in predictive performance over time. There are two notable patterns across regions and

periods. Firstly, the predictive abilities of bswa, blw, bsw, and bvck tend to move in

tandem, and they usually outperform bols. Except for Africa, bswa almost always dom-

inates others in predicting 1 year-ahead future realized bols. The good performance of

bswa also holds across developed, emerging, and frontier markets. Secondly, bdim and bfp

often underperform relative to bols and have relatively unstable predictive performance,

suggesting that they are unsuitable for forecasting bols.

3.3 Predicting bols over longer horizons

After establishing the superiority of bswa in predicting bols over 1 year, it is intriguing

to investigate whether bswa also performs well in forecasting bols over longer horizons.

The long-term predictability of bols reduces the rebalancing frequency for hedging long-

term market risk exposures, which in turn lowers the cost of risk management.

Similar to Welch (2022), this subsection looks at estimates from Equation 1 with

non-overlapping year-end betas (annual frequency, December to December) for 3 distinct

predictive horizons: 1 year, 3 years, and 5 years. The left-hand side of Table 5 reports

the R-squared values of these non-overlapping long-term pooled predictive regressions

by geographical regions. To address whether bmols can better predict itself over longer

horizons than betas estimated from daily observations, the last column (5yM) shows the

12



result for predicting bmols over predictive horizons of 5 years.12

Except for the Africa region, bswa gives the highest R
2

in predicting multiyear future

realized bols, especially for 1y. The left-hand side of Table A4 of the supplemental online

material shows the multiyear predictive performance of betas in 53 markets. In about half

of the markets, bswa is the best predictor in predicting bols across all chosen predictive

horizons for bols and bmols. For predictive horizons beyond 1 year, the double shrinkage

blw estimator performs better than bswa with small margins in the remaining half of

markets. The R
2

of bswa and blw are often statistically indistinguishable. Overall, the

predictive performance of beta estimators declines with the forecasting horizons.

[Insert Table 5 here: Multiyear Predictive Performance of Betas by Geographical Regions, Annual]

The right-hand side of Table 5 reports the RMSEs for multiyear beta forecasts. The

bswa estimator produces the lowest RMSEs for 1y in the Asia Pacific, the Middle East, and

the North America, while blw ranks first in the remaining 3 regions. For longer predictive

horizons, blw outperforms bswa. Betas estimated from monthly data are usually subpar,

and the commonly used bmols estimator consistently underperforms in terms of R
2

and

RMSE. As for market-level analysis, bswa is on par with blw for 1y, but blw broadly yields

the lowest RMSEs for predictive horizons beyond 1y, outperforming bswa in most cases.13

Moreover, blw has an upper edge over other estimators among African markets under the

R-squared and the RMSE benchmarks, highlighting the practical value of having a good

prior for betas in predicting market betas in frontier markets.

3.4 Predicting betas other than bols

So far, bswa performs well in forecasting the future realized bols in most markets over

different predictive horizons. As Welch (2022) discussed, the common goal of different

beta estimators is to uncover the unobservable true beta from noisy stock return data.

Therefore, a good beta estimator should also perform well in predicting its future self

as well as the future realizations of other betas. For each beta estimator in month t, I

12As bmols is estimated from 5 years of monthly data, the predictive horizon must also be at least 5
years to avoid overlapping data in the predictor and the predicted. For example, if I forecast bmols in
year 6 (predicted) with bmols in year 5 (predictor), both variables share 4 years of overlapping data.

13For example, bswa and blw are members of the Borup et al. (2023) best predictor sets for 1y in 39
and 38 markets, respectively. For 3y, these figures become 7 for bswa and 46 for blw. For details, please
refer to the right-hand side of Table A4 of the supplemental online material.

13



estimate Equation 1 with different combinations of beta predictors in month t− 12.14

[Insert Figure 1 here: Betas Rankings of Predicting Future Realized Betas in 53 Markets]

For ease of comparison, the Panel A of Figure 1 summarizes the R-squared rankings

of beta estimators in predicting bswa, bsw, blw, bvck, and bdim. Out of the 5 beta

estimators, bswa has the best overall performance in predicting future realizations of

itself and other beta estimators, except for blw. Likewise, the 1-year block-sampled

bsw estimator performs well in predicting other beta estimators and often beats blw in

predicting bswa, bsw, and bdim. In addition, the Panel B of Figure 1 shows the respective

RMSE rankings. Based on the RMSE metric, blw generally ranks first in predicting its

future self and future realizations of other betas, while bswa is usually the close second.

Besides bswa and blw, the bvck estimator also performs well in predicting its future

self. The bvck estimator shrinks bols towards its cross-sectional average, resulting in

persistent bvck estimates over time. Similarly, the blw estimator shrinks bvck estimates

towards market cap-specific targets. This persistency gives blw an advantage over other

beta estimators in predicting the future realized blw.

To summarize, bswa is consistently among the top 3 in predictive performance across

beta estimators and markets. If another beta is preferred over bols in estimating the true

beta, bswa usually offers the best prediction of the future realization of that estimator.

3.5 Hedging performance

A beta estimator that performs well in predictive regressions may not provide the opti-

mal hedging ratio, because biases in beta estimates can undermine hedging performance.

Similarly, Mincer and Zarnowitz (1969) show that the mean square error (MSE) is influ-

enced by bias, inefficiency, and noise. The MSE of a biased predictor can be smaller than

that of an unbiased one. Therefore, I conduct back-tests on beta-hedged strategies that

compare the hedging performance of beta estimators. For each beta estimator, I compute

the hedged excess daily return as ri,d− b̂i,m−1rm,d, which is the daily excess return of stock

i subtracted by the product of the previous month’s beta estimate and the daily excess

return of the market portfolio. I consider hedged daily returns because bols is optimized

14I lag predictor betas estimated with 5 years of data (bfp, bmols, bmvck, bmblm, and bmlw) by
60 months to avoid the mechanical correlations between predicted and predictor due to overlapping
estimation periods.
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to minimize the sum of squared daily residuals, the metric of hedging out-of-sample daily

returns aligns closely with the in-sample R-squared and out-of-sample RMSE metrics.

In practice, this procedure is equivalent to revising a stock’s hedging ratio towards its

exposure to market risk with the latest beta estimate at the end of each month.15

I repeat the procedure to get hedged stock returns of different beta estimates and

compare their hedging performance. Ideally, a perfect hedge should have zero excess

return and no variance. Therefore, the beta estimator with the lowest variance in hedged

excess stock returns has the best hedging performance. I also use the chi-square test to

determine whether the variance of each hedging strategy is statistically different from the

one that yields the lowest variance within a market. As shown in Table 6, the bswa-

hedged strategies have the lowest standard deviations in 5 out of 6 geographical regions.

The blw-hedge has the lowest standard deviation in Africa, but it is not significantly

different from the hedging strategies of bswa and bsw.16

[Insert Table 6 here: Hedging Performance of Betas by Geographical Regions]

For individual markets, bswa-hedged returns perform the best in 42 markets, trailing

by blw only in 11 markets.17 Overall, hedging results are similar for bswa, bsw, and blw,

whereas the bols-hedge produces significantly higher standard deviations in 49 out of 53

markets. In addition to the 11 beta estimators, mret represents a naive hedging strategy

with a fixed beta of 1. Across regions, bmols perform worse than not estimating the

beta, except for Africa. Similarly, the naive hedging strategy produces smaller standard

deviations than bmols-hedged returns in 34 markets. Therefore, hedging daily stock

returns with betas estimated from the conventional 60-month windows is undesirable.

According to Levi and Welch (2017), an individual with better prior knowledge about

beta can do better in predicting beta. To unleash the full potential of blw, the risk

manager should choose shrinkage targets tailored to the attributes of the stock and the

market. Therefore, the performance of blw may depend on the risk manager’s market-

specific knowledge and experience. My back-tests suggest the performance gaps between

15Unlike the R-squared and RMSE metrics, these tests do not involve comparison of betas estimated
at sequential points in time. Therefore, it is no longer necessary to lag beta predictors by 12 months to
avoid overlapping estimation periods. For the US market, Welch (2022) uses annual compounded returns
to evaluate hedging performance. I focus on daily returns to avoid issues arising from non-synchronous
trading between a stock and its market index in international markets.

16In the North American region, the chi-square tests of equal standard deviations are all rejected due
to massive stock-day observations in the US. The standard deviations of beta-hedged daily returns with
bols, bvck, bsw, bswa, and blw are economically similar.

17Table A5 of the supplemental online material reports the market-level hedging performance of betas.
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bswa/bsw-hedged and blw-hedged portfolios are usually small. Hence, slope-winsorized

betas provide practical and straightforward risk management solutions without additional

managerial inputs and data on firm characteristics.

3.6 Thinly traded stocks

Although betas estimated from daily data typically have better predictive perfor-

mance, they are susceptible to errors-in-variables biases induced by missing daily returns

in infrequently traded stocks (Scholes and Williams, 1977; Dimson, 1979). In emerging

and frontier markets, the problem of non-synchronous stock trading can potentially be

more severe than in their developed counterparts. Given the positive association between

stocks’ betas and their trading volumes, the conventional bols estimator can severely

underestimate the market betas of thinly traded stocks.

For each market, I first sort stocks into quintiles according to their average daily dollar

trading volume (DVol) over 126 trading days before each year-end. I then run annual

(December to December) pooled predictive regressions to compare the abilities of bdim,

bols, and bswa in predicting 1 year-ahead realized bols or bdim within each market’s DVol

quintiles. I also compute the cross-sectional means and standard deviations of bdim, bols,

and bswa within each quintile year by year before averaging their time series by quintiles.

Consistent with Welch (2022), all 3 betas are lower among infrequently traded stocks

for all markets. Across quintiles, bdim usually produces larger coefficients and higher vari-

ations in beta estimates than bols and bswa. The slope winsorization technique removes

the effects of outliers. As a result, bswa has the lowest variations. In most markets, bswa

has the best predictive performance across quintiles, while bdim performs the worst.18

For stocks with above median DVol, bdim has poor predictive performance even where

non-synchronous trading is no longer a concern. Although the bdim estimator aims to

reduce biases in estimating market betas of illiquid stocks, the empirical evidence shows

bdim cannot predict its future self better than other beta estimators.

For low trading stocks in the first and second DVol quintiles, bswa has the best per-

formance of predicting 1 year-ahead realized bdim in about three-quarters of the sampled

markets. Occasionally, even bols performs better at predicting 1 year-ahead bdim for

illiquid than bdim stocks for some markets. As an investor interested in the future bdim,

18Please refer to Tables A6, A7, and Figure A3 of the supplemental online material.
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the past bdim should never be used.

3.7 Additional beta estimators

In the supplemental online material, Table A8 and Figure A5 present the robustness

test results by incorporating 5 additional beta estimators covered in Hollstein (2020).

It also describes the estimation procedures and data requirements of these additional

estimators. The predictive performance of bswa remains strong. It ranks first by R
2

in 36

out of 53 markets and is usually among the top 3. Moreover, bswa and blw are members

of the best predictor sets according to the RMSE metric (Borup et al., 2023) in 33 and

39 markets, respectively. By default, the Bloomberg terminal provides the Blume (1971)

adjusted betas estimated from the past 2 years of weekly data (bbbg) and their values

before adjustments (braw). Table A9 summarizes the R-squared and RMSE rankings of

bbbg and braw compared with the 11 beta estimators.19 Across 53 markets, these two

Bloomberg betas never rank within the top 3 for R-squared, and the bbbg estimator only

ranks within the top 3 for RMSE 6 times. Generally, bswa and blw outperform bbbg,

except for 3 occasions where bbbg and bswa are in the best predictor sets. Due to data

limitations, this study does not consider beta estimators that utilize high-frequency data

(Aı̈t-Sahalia et al., 2020), firm fundamentals data (Cosemans et al., 2015), and stock

options data (Buss and Vilkov, 2012). Only requiring daily returns, bswa is an easy-to-

implement and robust beta estimator.

3.8 Additional markets

Given the data filters in Section 2, 26 international markets are excluded from the

main analysis, in which bswa achieves the highest R
2

in 16 of them and always ranks in

the top 4. Regarding the RMSE metric, bswa and blw are the best predictors in 20 and 22

markets, respectively. Moreover, bswa-hedged daily returns achieve the lowest standard

deviations in 19 of these 26 markets. These additional results are available in Tables A10

and A11 of the supplemental online material.

19For brevity, the table only shows the rankings of bswa, blw, bbbg, and braw out of 13 beta estimators.
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4 Conclusion

In a horse race of 11 market beta estimators across 53 international markets, the Welch

(2022) age-decayed slope-winsorized beta estimator (bswa) excels in predicting future

realized OLS betas as well as hedging market risk exposures around the world. Compared

with bswa, the next-best Levi and Welch (2017) double-shrinkage beta estimator (blw)

generally produces smaller RMSEs and has similar hedging performances. However, it

requires pre-specified shrinkage targets for different stock sizes. Hence, the usefulness of

blw ultimately hinges on the user’s prior knowledge of the relation between stocks’ market

capitalization and betas in a particular market. Choosing appropriate shrinkage targets

for different markets may require many subjective judgments. Unlike other shrinkage

estimators, bswa merely imposes that reasonable beta estimates should be between −2

and +4. Moreover, its minimum data requirement is identical to the commonly used

OLS beta estimated from 252 days of daily returns in the literature. Because bswa offers

a trivially simple adjustment correction that works well across developed and emerging

markets, researchers and practitioners should use bswa to estimate the market risk of

individual stocks in international markets, too.

Given the heterogeneity across international markets, it was not a foregone conclusion

that estimators performing well in one market could guarantee equal success in another

market. Only tautologies require no empirical tests. Therefore, the external validity of an

estimator must be tested through empirical investigation. In some sense, one could not

have anticipated the near universality of the evidence and could even find it surprising.

Simply put, the slope-winsorized market beta is not only simple to use but also the

dominant estimator of the market beta.
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Table 1: Sample Summary

Region ISO3 Name Class Stock Month Sample

Africa MAR Morocco FM 51 3,066 2004/07–2021/12
NGA Nigeria FM 95 8,056 2006/05–2021/12
TUN Tunisia FM 59 4,825 2004/11–2021/12
ZAF South Africa EM 364 35,729 1991/12–2021/12

Asia Pacific AUS Australia DM 1,348 97,190 1991/10–2021/12
BGD Bangladesh FM 258 16,054 2008/04–2020/03
CHN China EM 2,263 162,305 1998/03–2021/12
HKG Hong Kong DM 1,645 143,472 1991/12–2021/12
IDN Indonesia EM 344 27,250 1997/02–2021/12
IND India EM 2,484 211,025 1994/08–2021/12
JPN Japan DM 4,509 768,433 1991/12–2021/12
KOR South Korea EM 2,016 218,081 1992/01–2021/12
LKA Sri Lanka FM 192 13,434 1993/06–2020/03
MYS Malaysia EM 1,038 111,606 1991/12–2021/12
NZL New Zealand DM 132 13,393 1991/12–2021/12
PAK Pakistan FM 302 23,706 1998/12–2021/12
PHL Philippines EM 211 18,330 1994/07–2021/12
SGP Singapore DM 583 50,663 1991/12–2021/12
THA Thailand EM 676 67,239 1992/09–2021/12
TWN Taiwan EM 1,848 221,514 1994/01–2021/12
VNM Vietnam FM 462 23,696 2013/03–2021/12

Europe AUT Austria DM 83 9,728 1991/12–2021/12
BEL Belgium DM 161 21,367 1991/12–2021/12
CHE Switzerland DM 306 40,494 1991/12–2021/12
DEU Germany DM 915 95,628 1991/12–2021/12
DNK Denmark DM 178 21,708 1991/12–2021/12
ESP Spain DM 217 26,964 1991/12–2021/12
FIN Finland DM 158 21,299 1991/12–2021/12
FRA France DM 931 104,477 1991/12–2021/12
GBR United Kingdom DM 2,268 211,923 1991/12–2021/12
GRC Greece EM 306 23,169 1994/08–2021/12
ITA Italy DM 428 49,129 1991/12–2021/12
NLD Netherlands DM 239 31,617 1991/12–2021/12
NOR Norway DM 245 20,703 1991/12–2021/12
POL Poland EM 538 40,702 1999/06–2021/12
PRT Portugal DM 57 7,057 1996/01–2021/12
ROU Romania FM 51 3,528 2004/10–2021/12
RUS Russia SM 173 8,619 2001/07–2021/12
SWE Sweden DM 538 48,617 1991/12–2021/12
TUR Turkey EM 411 49,245 1996/02–2021/12

Middle East ARE United Arab Emirates EM 54 4,259 2007/05–2021/12
EGY Egypt EM 158 9,990 2002/12–2021/12
ISR Israel DM 349 29,715 2001/01–2021/12
JOR Jordan FM 96 6,795 2000/11–2020/03
KWT Kuwait EM 111 8,208 2007/06–2021/12
OMN Oman FM 61 4,305 2006/10–2021/12
SAU Saudi Arabia EM 166 16,985 2007/08–2021/12

North America CAN Canada DM 1,909 191,319 1988/02–2021/12
MEX Mexico EM 109 10,596 1995/02–2021/12
USA United States DM 13,137 1,935,418 1931/12–2021/12

South America ARG Argentina SM 69 8,005 1995/06–2021/12
BRA Brazil EM 175 13,341 1994/09–2021/12
CHL Chile EM 87 11,120 1995/01–2021/12

Description: This table summarizes the sample of 53 markets. The ISO3 column gives the
International Standards Organization (ISO) 3-digit alphabetic country code acquired from
https://wits.worldbank.org/wits/wits/witshelp/content/codes/country codes.htm. The Class col-
umn contains the MSCI’s 2022 annual market classification, including Developed Markets (DM),
Emerging Markets (EM), Frontier Markets (FM), and Standalone Markets (SM). These classifications
are available at https://www.msci.com/our-solutions/indexes/market-classification.

Interpretation: Selected markets should have sizable stock markets. For instance, each market must
have at least 50 stocks with 5 years of history and a market index with at least 5 constituents over the
sampling period. The resulting sample covers 53 markets across Africa, Asia Pacific, Europe, the Middle
East, North America, and South America.
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Table 2: Summary Statistics of Beta Estimates by Geographical Regions

bols bvck blw bdim bsw bswa bfp bmols bmvck bmblm bmlw

Africa (1990–2021, stock-months: 59,268)
Mean 0.80 0.79 0.80 0.83 0.81 0.81 0.97 0.96 0.93 0.97 0.90
SD 0.31 0.27 0.23 0.36 0.27 0.26 0.22 0.30 0.22 0.20 0.18
0.01 0.07 0.17 0.28 -0.05 0.18 0.23 0.56 0.24 0.38 0.49 0.44
Median 0.78 0.77 0.78 0.82 0.78 0.78 0.94 0.95 0.93 0.96 0.91
0.99 1.62 1.51 1.38 1.81 1.53 1.50 1.68 1.77 1.50 1.51 1.35

Asia Pacific (1990–2021, stock-months: 2,444,861)
Mean 0.88 0.87 0.85 0.94 0.88 0.88 1.02 1.04 1.01 1.03 0.95
SD 0.39 0.34 0.27 0.47 0.34 0.32 0.28 0.43 0.32 0.28 0.24
0.01 0.08 0.15 0.28 -0.07 0.17 0.19 0.54 0.11 0.25 0.41 0.37
Median 0.87 0.87 0.85 0.92 0.88 0.88 0.99 1.02 1.02 1.01 0.96
0.99 1.91 1.76 1.52 2.19 1.72 1.68 1.92 2.18 1.78 1.79 1.53

Europe (1990–2021, stock-months: 941,262)
Mean 0.73 0.73 0.75 0.80 0.74 0.74 0.91 0.96 0.93 0.97 0.90
SD 0.37 0.33 0.26 0.42 0.33 0.32 0.24 0.42 0.31 0.28 0.24
0.01 -0.02 0.06 0.22 -0.10 0.09 0.10 0.50 0.08 0.22 0.39 0.36
Median 0.71 0.71 0.73 0.78 0.72 0.72 0.89 0.93 0.93 0.96 0.90
0.99 1.71 1.59 1.43 1.95 1.61 1.59 1.62 2.16 1.75 1.77 1.53

Middle East (1999–2021, stock-months: 92,941)
Mean 0.91 0.90 0.87 0.98 0.90 0.90 1.08 1.06 1.03 1.04 0.97
SD 0.42 0.39 0.30 0.50 0.37 0.35 0.34 0.44 0.35 0.30 0.27
0.01 0.00 0.05 0.18 -0.08 0.08 0.11 0.50 -0.00 0.15 0.33 0.27
Median 0.88 0.87 0.86 0.95 0.88 0.89 1.03 1.04 1.03 1.03 0.97
0.99 2.05 1.93 1.64 2.38 1.84 1.78 2.09 2.36 2.02 1.91 1.70

North America (1930–2021, stock-months: 2,330,817)
Mean 0.83 0.82 0.83 0.91 0.83 0.82 1.01 1.03 0.99 1.02 0.95
SD 0.58 0.51 0.39 0.64 0.46 0.45 0.37 0.59 0.44 0.40 0.34
0.01 -0.31 -0.08 0.10 -0.45 0.00 0.01 0.42 -0.15 0.07 0.23 0.23
Median 0.78 0.77 0.80 0.86 0.79 0.79 0.97 0.98 0.97 0.98 0.94
0.99 2.44 2.21 1.89 2.68 2.04 2.00 2.13 2.70 2.12 2.14 1.81

South America (1993–2021, stock-months: 36,736)
Mean 0.90 0.89 0.89 0.93 0.90 0.90 1.00 1.05 1.03 1.04 0.99
SD 0.29 0.27 0.22 0.34 0.28 0.27 0.20 0.33 0.26 0.22 0.20
0.01 0.25 0.30 0.39 0.21 0.29 0.32 0.62 0.32 0.43 0.55 0.50
Median 0.89 0.89 0.89 0.92 0.89 0.89 0.98 1.03 1.01 1.02 0.99
0.99 1.62 1.54 1.39 1.83 1.57 1.55 1.60 1.98 1.70 1.65 1.49

Description: The above table presents the summary statistics of 11 market beta estimates in 6 geo-
graphical regions. Betas estimated from daily or monthly stock returns include OLS betas (bols/bmols),
Vasicek (1973) Bayesian shrinkage betas (bvck/bmvck), double shrinkage betas of Levi and Welch
(2017) (blw/bmlw), and Blume (1971) adjusted betas (bmblm). Predictors estimated from only daily
stock returns are Dimson (1979) synchronicity-adjusted betas (bdim) and hybrid betas of Frazzini and
Pedersen (2014) (bfp), and Welch (2022) slope-winsorized betas (bsw) and slope-winsorized betas with
age decay (bswa). Daily beta estimators (bols, bvck, blw, bdim, and bsw) utilize rolling windows of
252 days. The age-decayed beta estimator (bswa) has expanding windows of at least 100 days. The bfp
estimator uses 5 years of rolling 3-days log returns for estimating correlations and 1 year of rolling 1-day
log returns for estimating standard deviations. Monthly beta estimators (bmols, bmvck, bmblm, and
bmlw) require 5 years of rolling monthly stock returns. The bracket next to each region label contains
the sampling period and the number of observations.

Interpretation: Beta estimators with shrinkage or slope-winsorization usually have smaller dispersion
in their market beta estimates. The equal-weight averages of betas estimated from daily returns are
below 1, while their counterparts estimated from monthly returns are closer to 1.
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Table 5: Multiyear Predictive Performance of Betas by Geographical Regions, Annual

Predictive Regression R
2

Direct Comparison RMSE
1y 3y 5y 5yM 1y 3y 5y 5yM

Africa (1995–2021)
bols 0.32‡† 0.23‡ 0.18† 0.12 0.29 0.31 0.31 0.35
bvck 0.34 0.24 0.19 0.13 0.27 0.29 0.29 0.34
bdim 0.21‡† 0.15‡† 0.12‡† 0.1 0.35 0.36 0.36 0.37
bfp 0.14‡† 0.14‡† 0.08‡† 0.09† 0.34 0.33 0.34 0.3
blw 0.37 0.27 0.23 0.14 0.25F 0.27F 0.27F 0.32
bsw 0.34† 0.23† 0.18† 0.13 0.27 0.29 0.3 0.34
bswa 0.36 0.24 0.18† 0.13 0.26 0.29 0.3 0.33
bmols 0.14‡† 0.09‡† 0.06‡† 0.08‡ 0.37 0.38 0.38 0.33
bmvck 0.17‡† 0.11‡† 0.08‡† 0.09† 0.32 0.33 0.33 0.3
bmblm 0.14‡† 0.09‡† 0.06‡† 0.08‡ 0.34 0.35 0.34 0.29
bmlw 0.23‡† 0.17‡† 0.13‡† 0.11 0.29 0.3 0.3 0.28F

stock-years 4,465 3,440 2,657 2,657
Asic Pacific (1995–2021)

bols 0.36‡† 0.21‡† 0.15‡† 0.14‡† 0.35 0.39 0.4 0.47
bvck 0.37‡† 0.21‡† 0.16‡† 0.14‡† 0.32 0.37 0.39 0.45
bdim 0.27‡† 0.15‡† 0.11‡† 0.14‡† 0.42 0.46 0.47 0.49
bfp 0.25‡† 0.14‡† 0.12‡† 0.14‡† 0.37 0.4 0.39 0.41F

blw 0.37‡† 0.22‡† 0.16‡† 0.13‡† 0.31 0.35F 0.36F 0.45
bsw 0.37‡† 0.22‡† 0.16‡† 0.15‡† 0.32 0.37 0.38 0.45
bswa 0.42 0.23 0.18 0.17 0.3F 0.36 0.37 0.44
bmols 0.15‡† 0.09‡† 0.07‡† 0.15‡† 0.47 0.49 0.49 0.46
bmvck 0.17‡† 0.1‡† 0.08‡† 0.16 0.41 0.42 0.43 0.42
bmblm 0.15‡† 0.09‡† 0.07‡† 0.15‡† 0.41 0.42 0.42 0.41F

bmlw 0.19‡† 0.12‡† 0.09‡† 0.15‡† 0.36 0.38 0.38 0.41
stock-years 188,865 151,251 120,158 120,158

Europe (1995–2021)
bols 0.45‡† 0.3‡† 0.21‡† 0.13 0.3 0.34 0.37 0.48
bvck 0.48‡† 0.31‡† 0.22‡† 0.13 0.28 0.33 0.36 0.47
bdim 0.32‡† 0.22‡† 0.16‡† 0.14 0.37 0.4 0.41 0.47
bfp 0.29‡† 0.2‡† 0.13‡† 0.09‡† 0.36 0.37 0.38 0.39
blw 0.49‡† 0.33 0.25 0.13 0.26F 0.3F 0.33F 0.43
bsw 0.48‡† 0.31‡† 0.22‡† 0.13 0.27 0.33 0.36 0.46
bswa 0.51 0.32† 0.23‡ 0.14 0.26 0.32 0.35 0.46
bmols 0.15‡† 0.09‡† 0.06‡† 0.1‡† 0.49 0.5 0.51 0.46
bmvck 0.18‡† 0.1‡† 0.06‡† 0.11‡† 0.41 0.43 0.44 0.41
bmblm 0.15‡† 0.09‡† 0.06‡† 0.1‡† 0.43 0.44 0.44 0.39
bmlw 0.22‡† 0.14‡† 0.09‡† 0.12‡ 0.37 0.38 0.39 0.38F

stock-years 71,737 56,924 45,120 45,120
Middle East (2005–2021)

bols 0.32‡† 0.13‡ 0.09 0.19 0.4 0.48 0.49 0.46
bvck 0.34‡ 0.14 0.09 0.2 0.38 0.45 0.47 0.45
bdim 0.24‡† 0.09‡† 0.06† 0.17 0.47 0.54 0.55 0.49
bfp 0.13‡† 0.08‡† 0.03‡† 0.12‡† 0.46 0.49 0.5 0.45
blw 0.33‡ 0.14 0.1 0.19 0.36F 0.42F 0.43F 0.44
bsw 0.34 0.14 0.09 0.19 0.37 0.44 0.46 0.45
bswa 0.37 0.17 0.1 0.2 0.35F 0.42F 0.45 0.44
bmols 0.14‡† 0.08‡† 0.08 0.16‡ 0.51 0.54 0.53 0.47
bmvck 0.16‡† 0.1‡† 0.09 0.17 0.45 0.47 0.47 0.43
bmblm 0.14‡† 0.08‡† 0.08 0.16‡ 0.44 0.46 0.46 0.43F

bmlw 0.17‡† 0.11‡† 0.1 0.17 0.41 0.43F 0.43F 0.42F

stock-years 7,023 5,170 3,663 3,663
North America (1935–2021)

bols 0.46‡† 0.32‡† 0.25‡† 0.23‡† 0.47 0.53 0.57 0.6
bvck 0.49‡† 0.34‡† 0.26‡† 0.24‡† 0.43 0.49 0.53 0.57
bdim 0.35‡† 0.24‡† 0.19‡† 0.21‡† 0.56 0.61 0.63 0.61
bfp 0.33‡† 0.24‡† 0.18‡† 0.22‡† 0.51 0.53 0.55 0.5F

blw 0.49‡† 0.35† 0.27 0.23‡† 0.41 0.46F 0.49F 0.53
bsw 0.49‡† 0.35‡† 0.27‡† 0.24‡ 0.42 0.48 0.51 0.55
bswa 0.51 0.36 0.28 0.25 0.41F 0.47 0.5 0.54
bmols 0.23‡† 0.16‡† 0.12‡† 0.2‡† 0.63 0.65 0.67 0.59
bmvck 0.25‡† 0.17‡† 0.13‡† 0.21‡† 0.55 0.57 0.59 0.53
bmblm 0.23‡† 0.16‡† 0.12‡† 0.2‡† 0.55 0.57 0.58 0.51
bmlw 0.28‡† 0.2‡† 0.15‡† 0.21‡† 0.51 0.53 0.54 0.5F

stock-years 180,268 152,738 130,329 130,329
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Table 5: Multiyear Predictive Performance of Betas by Geographical Regions, Annual
(Continued)

Predictive Regression R
2

Direct Comparison RMSE
1y 3y 5y 5yM 1y 3y 5y 5yM

South America (1998–2021)
bols 0.38 0.23 0.17 0.09† 0.26 0.3 0.31 0.4
bvck 0.39 0.23 0.17 0.09† 0.25 0.29 0.3 0.39
bdim 0.32‡† 0.17‡† 0.13† 0.11 0.3 0.33 0.34 0.4
bfp 0.22‡† 0.16‡† 0.12‡ 0.11 0.28 0.29 0.3 0.33
blw 0.4 0.25 0.19 0.08‡ 0.23F 0.27F 0.28F 0.38
bsw 0.39 0.23 0.18 0.09† 0.25 0.29 0.31 0.39
bswa 0.42 0.24 0.19 0.1 0.24 0.28 0.29 0.38
bmols 0.2‡† 0.11‡† 0.09‡† 0.14 0.36 0.38 0.37 0.36
bmvck 0.22‡† 0.13‡† 0.1‡† 0.15 0.31 0.33 0.32 0.33
bmblm 0.2‡† 0.11‡† 0.09‡† 0.14 0.31 0.32 0.32 0.32F

bmlw 0.26‡† 0.16‡† 0.13† 0.14 0.27 0.29 0.29 0.32
stock-years 2,818 2,199 1,681 1,681

Description: This table reports the region-by-region average R-squared values (R
2
) from the multiyear

pooled predictive regressions of bolsi,y = γa+γbb̂i,y−l+εi,y−l on the left panel and the root mean squared

errors (RMSE) in the form of
√

1
NY

∑
n

∑
y(bolsn,y − b̂n,y−l)2 on the right panel. Candidates predicting

bolsi,y, the future realized OLS betas in December of year y, include bols, bvck, blw, bswa, and bmols
estimated in December of year y − l where l ∈ {1, 3, 5}. The last column (5yM) reports the result for
predicting bmols over predictive horizons of 5 years. Bold figures highlight the best-performing beta’s

R
2

and RMSE for each predictive horizon. The Fisher’s z-test compares the differences between the R
2

of an estimator and the best performer. Superscripts †, ‡, and ‡† represent rejecting the null hypothesis
of the equal correlations at the 10%, 5%, and 1% significance levels under the z-test, respectively. The
Borup et al. (2023) multivariate version of the Giacomini and White (2006) test compares the RMSEs
of all beta estimators. It then eliminates betas with inferior predictive performance sequentially at the
5% significance level. When the null hypothesis of equal predictive ability across beta estimators is no
longer rejected, superscripts F indicate which of the remaining beta estimator(s) is/are in the best set
of predictor(s) for each predictive horizon. The bracket next to each region label contains the sampling
period. The stock-years row shows the number of observations for each predictive horizon.

Interpretation: From 1y to 2y, bswa usually produces higher R
2

than its rivalries. For longer horizons,

bswa has the overall higher R
2

in predicting bols across all 4 predictive horizons and predicting 5 years-
ahead bmols than other betas in 5 out of 6 geographical regions. As for the RMSE metric, blw has the
best overall performance for predictive horizons beyond 1 year.
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Figure 1: Betas Rankings of Predicting Future Realized Betas in 53 Markets

Panel A: R
2

Rankings

Panel B: RMSE Rankings

Description: Each subplot in this figure gives the predictive regression R-squared/direct comparison
RMSE rankings of alternative beta estimators in predicting a particular beta estimator’s 1 year future
realization. The stock-month sample in this figure is identical to those in Table 3.

Interpretation: Based on the R-squared metric, the bswa estimator has the best overall performance
in predicting future realizations of itself and other beta estimators, except for blw. As for RMSE, blw
generally outperforms other beta estimators.
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