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ABSTRACT

This study is critical of implausible stock return effects. Among
these are studies linking stock returns to extreme climate vari-
ables, outer space activity, sports results, politics, religious ob-
servances, weather conditions, and other peculiar phenom-
ena. I argue that these effects are just the predetermined out-
comes of endogenous treatment assignments, not true causal
effects. To demonstrate, I “discover” a new implausible ef-
fect called the big league effect. Win-loss records of NY’s two
professional baseball teams predict excess returns on popu-
lar anomaly strategies. New critical values are calculated by
Monte Carlo simulation where treatment assignment follows
a Bernoulli distribution with endogenous success probability.
These new critical values expose the big league effect as just
an artifact of the sample selection mechanism.
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1 Motivation

Splashy stock return effects garner attention in academic journals and pop-
ular media outlets. Among these are studies linking stock returns to ex-
treme climate variables (El Niño, geomagnetic storm activity, global warm-
ing), outer space activity (lunar phases, planetary conjunction, sunspots),
sports results (basketball, cricket, football, ice hockey, rugby, soccer), pol-
itics (first 100-days of a new US President, party of the US President),
religious observances (Ramadan), weather conditions (clouds, humidity,
rain, snow, sunshine, temperature, wind), and other peculiar phenomena
(air pollution, daylight savings time, Friday 13th, music sentiment, sea-
sonal depression, summer vacation).1

I argue that these effects are nothing more than predetermined out-
comes of endogenous treatment assignments (ETA) not true causal effects.
To demonstrate, I start by “discovering” a new implausible stock return ef-
fect called the big league effect. The big league effect links future stock
returns to the win-loss records of New York’s two professional baseball
teams. Win-loss records for the NY Yankees and NY Mets have signifi-
cant power to predict excess returns on popular anomaly strategies. Stock
traders exploiting the big league effect can earn significant excess returns
by strategically holding positions following months in which the Yankees
or Mets win (do not win) a majority of their baseball games.

I then expose the big league effect as just the predetermined outcome
of an ETA and faulty inference. An assignment mechanism is endogenous
when a researcher picks a treatment assignment that tilts the sample se-
lection in favor of finding a significant result. For implausible stock return
effects, this involves concocting an entertaining story as a means to se-

1See, for example, Kolb and Rodriguez (1987), Kamstra et al. (2000) and Kamstra et al.
(2003), Santa-Clara and Valkanov (2003), Cao and Wei (2005), Dowling and Lucey (2005)
and Dowling and Lucey (2008), Keef and Roush (2005) and Keef and Roush (2007), Chang
et al. (2006), Goetzmann and Zhu (2005), Yuan et al. (2006), Edmans et al. (2007), Modis
(2007), Yoon and Kang (2009), Kang et al. (2010), Kaplanski and Levy (2010), Keef and
Khaled (2011), Lee and Wang (2011), Białkowski et al. (2012), Chang et al. (2012), Lu and
Chou (2012), Novy-Marx (2014), Apergis et al. (2016), Kaustia and Rantapuska (2016),
Lepori (2016), Mbanga et al. (2019), Chan et al. (2020), Fernandez-Perez et al. (2020),
Dong and Tremblay (2021), Liu et al. (2021), and Edmans et al. (2022). See also Koppett
(1987), Koppett (1988), and Koppett (1989) and Krueger and Kennedy (1990) for discus-
sion on the eponymous Super Bowl indicator discovered in the sports pages of the New
York Times.
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lect extreme returns with greater probability into one sample group than
another.

For example, I discover the big league effect by exploiting the preexist-
ing differences in anomaly returns following months in which the Yankees
or Mets win (do not win) a majority of their baseball games. Had this
treatment assignment not yielded a significant difference in means, then
I would have tried the win-loss records of rival teams from Boston and
Philadelphia. Had those not worked, then I would have tried the number
of rainbows, shark attacks, or UFO sightings. The point is that the stock
returns are known before the testing begins. All a motivated researcher
needs to do is find a way to tilt the sample selection in favor of yielding a
significant difference in means.

The problem with this is that the standard T-test assumes that the treat-
ment and control groups are selected by random sampling. With random
sampling, the treatment assignment is made by chance. A monthly return
is just as likely to be in the treatment group as it is to be in the control
group. Nonrandom sampling inflates the usual T-statistic and renders the
critical values from the usual T-distribution invalid. Comparing a T-statistic
inflated by an ETA to the critical values for the usual T-distribution makes
an implausible stock return effect seem much more improbable than it
really is.

I account for this by calculating a new randomization distribution for
the T-statistic by Monte Carlo simulation. Specifically, logistic regression
of win-loss records on anomaly returns yields fitted values representing
propensity scores. I use these propensity scores to populate 100,000 treat-
ment assignments and calculate difference in means tests. The upper 10%,
5%, 1%, and 0.1% values of the 100,000 T-statistics calculated by random-
ization represent new critical values for the T-distribution. These new and
larger critical values explain away the big league effect as just the prede-
termined outcome of an ETA and faulty inference. Future research along
these lines may yield new insight on the true significance of other implau-
sible stock return effects.

The remainder of the study proceeds as follows. I discuss the growing
literature on statistical bias in financial research in Section 2. I “discover”
the big league effect in Section 3. In Section 4, I describe the nature and
meaning of an ETA and explain why it renders the usual T-distribution
invalid. In Section 5, I calculate the randomization distribution and extract
the new critical values. These new and larger critical values expose the big
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league effect as just a statistical artifact in Section 6. Section 7 summarizes
and concludes.

2 Related Literature

A number of studies indicate growing interest in the problem of statistical
bias in financial research. For example, Harvey (2017) explores the mean-
ing and limitations of the p-value and offers the minimum Bayes factor as
an alternative. Robins and Smith (2020) argue that studies on the con-
stancy of stock return anomalies are subject to selection bias and suggest
an unbiased alternative. Chen (2021) focuses on the surprisingly large
amount of large T-statistics reported in the literature and on the limits
to p-hacking. Hasler (2023) studies how the small decisions researchers
make when they construct anomaly portfolios influences the significance
of future portfolio returns.

In this study, I argue that implausible stock return effects are just sta-
tistical artifacts not true causal effects. This is important because there is
little reason to believe that unusual phenomena have any real causal effect
on stock returns even if the test results are statistically significant.

3 The Big League Effect

A study critical of implausible effects needs an implausible effect to criti-
cize. In this section, I “discover” a new stock return effect. The big league
effect links future stock returns to the win-loss records of NY’s two profes-
sional baseball teams, the Yankees and Mets.

3.1 Summary

The game of baseball is such an inveterate part of American culture that
it is known as “America’s National Pastime.” Nicknamed the “big league,”
Major League Baseball (MLB) stands as North America’s premier profes-
sional baseball league and one of the most widely-followed sports leagues
in the world. At the present time, there are 30 MLB teams throughout the
US and Canada, organized into the American (AL) and National Leagues
(NL).
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Two of the most storied MLB teams represent New York City and the NY
metropolitan area. Originally known as the Highlanders, the NY Yankees
of the AL have played their home games at Yankee stadium in the Bronx,
since 1923, while the NY Mets of the NL have played their home games
at either the Polo Grounds in Upper Manhattan or at Citi Field (formerly
Shea Stadium) in Queens, since 1962.2

New York City is also home to the NY Stock Exchange and many profes-
sional stock traders live in the NY metropolitan area. Many of these traders
follow the Yankees or Mets whose on-field performance elicits a powerful
emotional response in their fans. Groundbreaking studies by Saunders
(1993) and Hirshleifer and Shumway (2003) have already established a
link between stock traders’ moods and stock returns, operating through
stock traders’ emotional response to the local weather conditions.3 If the
on-field performance of the Yankees and Mets also elicits a similar type
of emotional response, then there is another plausible link between stock
traders’ moods and stock returns, operating through stock traders’ emo-
tional response to the win-loss records of the Yankees and Mets.

I exploit the link between stock traders’ moods and stock returns to
discover a new stock return effect called the big league effect. Drawing
on largely untapped historical MLB game log data, I discover that the Yan-
kees’ and Mets’ monthly win-loss records have significant power to predict
excess returns on popular anomaly strategies. Stock traders exploiting the
big league effect can earn significant excess returns by strategically hold-
ing positions following months in which the Yankees or Mets win (do not
win) a majority of their baseball games.

Following months in which the Yankees win a majority of their games, I
find that long positions in the momentum, residual variance, and variance
anomalies earn between significant 1.47% and significant 1.81% more per
month than in other months. Short positions in book-to-market, cash-
flow price, earnings price, investment, long-term reversal, market beta,
short-term reversal, and size earn between significant 0.59% and signifi-
cant 1.83% more per month than in other months.

Following months in which the Mets win a majority of their games, I

2Total home game attendance in 2023 was 3.3 and 2.6 million for the Yankees
and Mets, respectively. See https://www.baseball-reference.com/leagues/majors/2023-
misc.shtml.

3See Lucey and Dowling (2005) for a survey of the literature on stock returns and
investors’ moods.
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find that long positions in momentum, net share issues, operating prof-
itability, residual variance, and variance earn between significant 0.94%
and significant 3.10% more per month than in other months. Short posi-
tions in investment, long-term reversal, market beta, short-term reversal,
and size earn between significant 0.85% and significant 2.28% more per
month than in other months.

3.2 Data and Method

Data on the Yankees’ and Mets’ win-loss records comes from Retrosheet,
Inc., a non-profit corporation founded in 1989 to computerize historical
accounts of MLB games.4 Retrosheet has game log data on MLB games
played since 1871, including the game dates, team names, and final scores.

I use Retrosheet’s game log data to calculate a team’s monthly winning
percentage as the total number of games won divided by the total number
of games played.5 I then set the dummy variable, win, equal to one in the
months where a team has a monthly winning percentage greater than or
equal to 0.500 and zero otherwise.

Data on anomaly returns comes from the internet data library of Ken
French.6 For the 600 months between January 1974 and December 2023,
I calculate the monthly percent excess return on 15 popular stock return
anomalies by simultaneously buying and selling the extreme equal-weight
decile portfolios. These 15 anomalies are: accruals (Sloan, 1996), book-
to-market (Fama and French, 1992), cashflow price (Lakonishok et al.,
1994), dividend yield (Naranjo et al., 1998), earnings price (Basu, 1977),
investment (Cooper et al., 2008), long-term reversal (De Bondt and Thaler,
1985), market beta (Fama and MacBeth, 1973), momentum (Jegadeesh
and Titman, 1993), net share issues (Pontiff and Woodgate, 2008), operat-
ing profitability (Novy-Marx, 2013), residual variance (Ang et al., 2006),
short-term reversal (Jegadeesh, 1990), size (Banz, 1981), and variance
(Haugen and Heins, 1975). For book-to-market, cashflow price, dividend
yield, earnings price, market beta, momentum, and operating profitabil-
ity, the high-value portfolio is associated with higher mean return, while

4See https://www.retrosheet.org/.
5I use the ending dates for games that were started on one date, but were suspended

and ended on a later date. For example, the NY Mets and Washington Nationals started a
game on August 10, 2021, but that game was suspended due to rain. The game ended on
August 11, 2021.

6See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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for accruals, investment, long-term reversal, net share issues, residual
variance, short-term reversal, size, and variance, the high-value portfo-
lio is associated with lower mean return. I form the portfolios so that the
mean return is positive. I then merge the monthly anomaly returns with
Retrosheet’s game log data such that the anomaly return in month t is
matched with Retrosheet’s game log data on win-loss records in month
t − 1.

As the first step in the analysis, I depict 15 boxplots of monthly excess
returns by wint−1. These boxplots portray the medians, first and third
quartiles, and outliers for each series of anomaly returns.

Figure 1 depicts the 15 boxplots of monthly excess returns for the Yan-
kees.

[Figure 1 here]

Figure 1 exposes meaningful differences in the distributions of the re-
turns by wint−1 for the Yankees. Extreme returns are generally selected
with lesser (greater) frequency following months in which the Yankees
win (do not win) at least half of their baseball games.

Figure 2 depicts the 15 boxplots of monthly excess returns for the Mets.

[Figure 2 here]

Figure 2 exposes meaningful differences in the distributions of the re-
turns by wint−1 for the Mets. Extreme returns are also generally selected
with lesser (greater) frequency following months in which the Mets win
(do not win) at least half of their baseball games.

I then calculate the mean returns and test for significant differences in
the mean returns by wint−1 by estimating

rt = µ0 + ϵt (1)

rt = µ1 +µ2wint−1 + ϵt , (2)

where rt is the excess return on an anomaly portfolio in month t and
wint−1 is the win-loss dummy predictor variable. The ϵt is a mean zero
error term.7

7I use R computer software by the R Core Team (2024) for all of the calculations.
Major portions of the R code used for this study are given in the Appendix.
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The least squares estimate for µ0 is then the mean excess return over
the whole 600-month sample period. The µ1 is the mean excess return
following months in which a team does not win at least half of its games
or does not play any games at all. Primary interest lies in the estimate for
µ2, the big league effect. The estimate for µ2 is the difference in the mean
excess return following months in which a team wins at least half of its
games and the mean excess return following months in which a team does
not win at least half of its games or does not play any games at all. Evi-
dence in favor of a significant big league effect is given by comparing the
T-statistic for µ2 in regression (2) to the 5% critical value for the standard
T-distribution.

3.3 Results

Table 1 summarizes the results from regressions (1) and (2) for the Yan-
kees.

[Table 1 here]

The Yankees win a majority of their games (wint−1 = 1) in 251 months
of the 600-month sample period. Long positions in the momentum, resid-
ual variance, and variance anomalies earn between significant 1.47% and
significant 1.81% more per month in these months than in other months.
Short positions in book-to-market, cashflow price, earnings price, invest-
ment, long-term reversal, market beta, short-term reversal, and size earn
between significant 0.59% and significant 1.83% more per month in these
months than in other months.

Table 2 summarizes the results from regressions (1) and (2) for the
Mets.

[Table 2 here]

The Mets win a majority of their games (wint−1 = 1) in 178 months of
the 600-month sample period. Long positions in momentum, net share is-
sues, operating profitability, residual variance, and variance earn between
significant 0.94% and significant 3.10% more per month in these months
than in other months. Short positions in investment, long-term rever-
sal, market beta, short-term reversal, and size earn between significant
0.85% and significant 2.28% more per month in these months than in
other months.
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3.4 Conclusion

In this section, I “discover” a new implausible stock return effect called the
big league effect. Win-loss records for the NY Yankees and NY Mets have
significant power to predict excess returns on popular anomaly strategies.

In the following sections, I will expose the big league effect as just the
predetermined outcome of an ETA not a true causal effect. Endogenous
assignment inflates the usual T-statistic by tilting the treatment assignment
in favor of finding a significant difference in means. Comparing a T-statistic
inflated by ETA to the 5% critical value from the usual T-distribution makes
the big league effect seem much more improbable than it really is.

4 Endogenous Treatment Assignment

The difference in means test in regression (2) requires a series of stock
returns and a series of dummy variables. Let Ri = (rt , . . . , rT ) represent
the series of stock returns. Let Di = (dt , . . . , dT ) represent one possible
series of dummy variables. For example, Di could be an ordered series
with a clear breakpoint like Di = (0, 0,0, 1,1, 1) or an unordered series
like Di = (0,0, 1,1, 0,1).

The series Di is known as the treatment assignment. The probability of
a particular treatment assignment is known as the assignment mechanism.
With a sample size of 600 stock returns and two sample groups (treatment
and control), there are 2600 possible treatment assignments.

The dummy variables in Di are what determine how the stock returns
in Ri are selected into treatment or control groups where

dt =

¨

0 then rt is selected into the control group

1 then rt is selected into the treatment group.
(3)

A motivated researcher selects among which of the 2600 possible treat-
ment assignments to study.8 For example, I select the treatment assign-
ments Dyankees and Dmets using the win-loss records of the Yankees and
Mets. Had Dyankees and Dmets not yielded a significant difference in means
test, then I would have tried the treatment assignments Dred sox and Dphillies

8See Hasler (2023) for evidence on how a motivated researcher’s selection among
which of the possible Ri to study affects statistical significance.
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using the win-loss records of rival MLB teams from Boston and Philadel-
phia. Had these not yielded a significant difference in means, then I would
have tried treatment assignments Drainbows, Dsharks, or Dufos by concocting a
story about the causal effect of rainbows, shark attacks, or UFO sightings
on stock returns.

The problem with this is that the test statistic for µ2 in regression (2),
T (Di , Ri), only follows the usual T-distribution if the conditional probabil-
ity of sample group selection is random. This means that the conditional
probability of treatment group selection must be Pr (dt = 1 | rt) = 0.50
and thus the conditional probability of control group selection must also
be Pr (dt = 0 | rt) = 0.50. Standard methods assume that the dt are ex-
ogenous in the sense that the anomaly returns were equally likely to have
been in the treatment group as they were to have been in the control group
before the testing begins.

Selection of the treatment assignment by endogenous methods violates
this exogeneity requirement by tilting the probability of sample group se-
lection in favor of finding a significant difference in means. This inflates
the usual T-statistic, making an implausible stock return effect seem much
more improbable than it really is.9

To account for this, I calculate a new randomization distribution for the
standard difference in means test. Specifically, logistic regression of win-
loss records on anomaly returns yields fitted values representing propen-
sity scores. I use these propensity scores to populate 100,000 treatment
assignments by Monte Carlo simulation. Each treatment assignment rep-
resents a series of random draws from independent Bernoulli trials where
the propensity scores serve as probabilities of success. The upper 10%, 5%,
1%, and 0.1% values of the 100, 000 T-statistics calculated by randomiza-
tion represent new critical values for the T-distribution. Using these new
and larger critical values to evaluate the big league effect exposes the big
league effect as just the predetermined outcome of an ETA not a true causal
effect.

9The difference in means test is essentially a structural break test when the treatment
assignment is an ordered series with a clear breakpoint like Di = (0,0, 0,1, 1,1). Robins
and Smith (2020) show how a researcher’s endogenous selection of this breakpoint inflates
the usual T-statistic and suggest an unbiased alternative. This study extends that analysis
by showing how a researcher’s endogenous selection of an unordered series like Di =
(0,1, 1,1, 0,1) also inflates the usual T-statistic and renders the usual T-distribution invalid.
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5 Randomization-based Inference

In this section, I describe how I calculate the randomization distribution by
Monte Carlo simulation. This involves populating 100, 000 treatment as-
signments, Di = (dt , . . . , dT ), where each dt is the result of an independent
Bernoulli trial with success probability of pt .

The pt is a propensity score calculated as a fitted value from the logistic
regression

ln
�

Pr (wint−1 = 1 | rt)
1− Pr (wint−1 = 1 | rt)

�

= β0 + β1rt , (4)

where Pr (wint−1 = 1 | rt) is the conditional probability of treatment group
selection.10 The β0 is a constant and the β1 represents the change in the
log odds of treatment group selection given a change in the monthly excess
return rt .

The fitted value pt calculated as

pt =
1

1+ e−(β̂0+β̂1rt)
(5)

becomes a Bernoulli success probability used to populate 100,000 treat-
ment assignments Di = (dt , . . . , dT ) where dt ∼ Bin (1, pt).

Table 3 reports the results of the logistic regressions for the Yankees.
Also reported are the average marginal effects (AME) as ∆Pr(wint−1=1|rt )/∆rt .

[Table 3 here]

Higher returns are selected into the treatment group with greater prob-
ability for the momentum, residual variance, and variance anomalies. The
β1 are significant 0.040 for momentum, significant 0.039 for residual vari-
ance, and significant 0.034 for variance. The AME for momentum is sig-
nificant 0.010, meaning that a 1% increase in the monthly excess return
on momentum increases the probability of treatment group selection by
1%. The AME for residual variance is significant 0.009 and the AME for
variance is significant 0.008.

10The idea to correct for sample selection using the output from a binary response
model originates in Heckman (1979). See Kennedy (1995) for discussion on the benefits
of randomization tests in econometrics. See Branson and Bind (2018) for evidence on the
validity of randomization-based inference for Bernoulli trial experiments in observational
studies.
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Lower returns are selected into the treatment group with greater prob-
ability for book-to-market, cashflow price, earnings price, investment, long-
term reversal, market beta, short-term reversal, and size. The β1 ranges
from from significant −0.033 for market beta to significant −0.099 for in-
vestment. The AME ranges from significant −0.008 for market beta and
short-term reversal to significant −0.024 for investment.

Table 4 reports the results of the logistic regressions for the Mets.

[Table 4 here]

Higher returns are selected into the treatment group with greater prob-
ability for momentum, net share issues, operating profitability, residual
variance, and variance. The β1 ranges from significant 0.048 for momen-
tum to significant 0.083 for operating profitability. The AME ranges from
significant 0.010 for momentum to significant 0.017 for operating prof-
itability.

Lower returns are selected into the treatment group with greater prob-
ability for investment, long-term reversal, market beta, short-term rever-
sal, and size. The β1 ranges from from significant −0.038 for short-term
reversal to significant −0.103 for long-term reversal. The AME ranges
from significant −0.008 for short-term reversal to significant −0.021 for
long-term reversal.

The fitted values pt from equation (5) are used to populate 100,000
random treatment assignments Di . With each treatment assignment I then
calculate 100,000 difference in means tests by estimating

rt = µ1 +µ2dt + ϵt , (6)

where rt is the excess return on an anomaly portfolio in month t and dt is
a dummy variable such that dt ∼ Bin (1, pt). I keep the absolute value of
the 100,000 T-statistics calculated for µ2 as the exact randomization distri-
bution for the difference in means test. These T-statistics are corrected for
heteroskedasticity and autocorrelation using the methods of Newey and
West (1987) and Andrews (1991).

The upper 10%, 5%, 1%, and 0.1% values of the 100,000 T-statistics
calculated by Monte Carlo simulation represent new critical values for the
T-distribution.

Table 5 reports the new critical values for the Yankees.
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[Table 5 here]

Table 6 reports the new critical values for the Mets.

[Table 6 here]

As expected, the new critical values are larger than the usual 10%,
5%, 1%, and 0.1% asymptotic critical values of 1.645, 1.960, 2.576, and
3.291 for the standard T-distribution. With 598 degrees of freedom, the
10%, 5%, 1%, and 0.1% critical values for the standard T-distribution are
1.647, 1.964, 2.584, and 3.307. In the following section, I use the new
critical values from the randomization distribution to explain away the
big league effect as just the predetermined outcome of an ETA and faulty
inference.

6 Exposing the Big League Effect

For the Yankees, the maximum (absolute value) T-statistic for µ2 in Table 1
is 4.175 for long-term reversal, which is highly significant when compared
to 0.1% critical value of 3.307 for the usual T-distribution. When compared
to the 5% critical value of 5.784 from the randomization distribution in
Table 5, the big league effect for long-term reversal is no longer significant.
In fact, comparing all of the T-statistics for µ2 in Table 1 to the 5% critical
values in Table 5 explains away all of the big league effects for the Yankees.

The same holds for the Mets. The maximum (absolute value) T-statistic
for µ2 in Table 2 is 6.007 for long-term reversal, which is highly significant
when compared to 0.1% critical value for the usual T-distribution. This
effect disappears though when the T-statistic is compared to the 5% critical
value of 6.761 from the randomization distribution in Table 6. Comparing
all of the T-statistics for µ2 in Table 2 to the 5% critical values in Table 6
explains away all of the big league effects for the Mets.

7 Summary and Conclusion

How probable is it to find a significant relation between the win-loss records
of the Yankees and Mets and future stock returns? What about extreme
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climate variables, outer space activity, sports results, politics, religious ob-
servances, and weather conditions? Answering this type of question in-
volves knowledge of the underlying distribution of the stock returns and
a complete understanding of the sample selection mechanism.

In this study, I argue that implausible stock return effects are noth-
ing more than predetermined outcomes of endogenous treatment assign-
ments, not true causal effects. I demonstrate this by “discovering” a new
implausible effect called the big league effect. Win-loss records of NY’s
two professional baseball teams predict excess returns on popular anomaly
strategies. Stock traders exploiting the big league effect can earn signifi-
cant excess returns by strategically holding positions following months in
which the Yankees or Mets win (do not win) a majority of their baseball
games.

I then expose the big league effect as just a statistical artifact of ETA
and faulty inference. Selecting returns into treatment and control groups
using the win-loss records of the Yankees and Mets is just a means to tilt the
treatment assignment in favor of finding a significant result. Had the win-
loss records of the Yankees and Mets not yielded a significant difference
in means, then I would have tried the win-loss records of rival MLB teams
from Boston and Philadelphia. Had those not worked, then I would have
tried the number of rainbows, shark attacks, or UFO sightings.

The problem with this is that nonrandom sampling inflates the usual
T-statistic and renders the critical values for the standard T-distribution
invalid. Comparing a T-statistic inflated by ETA to the usual critical values
from the standard T-distribution makes an implausible stock return effect
seem much more improbable than it really is.

To account for this, I calculate a new randomization distribution for the
T-statistic by Monte Carlo simulation. This involves populating 100,000
treatment assignments where extreme returns are selected with greater
probability for one sample group than another. The upper 10%, 5%, 1%,
and 0.1% values of the 100, 000 T-statistics calculated by randomization
represent new critical values for the T-distribution. These new critical val-
ues are larger that the critical values for the standard T-distribution be-
cause these new values account for inflation by ETA.

These new and larger critical values explain away the big league effect
as nothing more than a statistical artifact. Future research along these
lines may yield new insight into whether other implausible stock return
effects succumb to the same critique.
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Figure 1: Boxplots of monthly excess returns by sample group for the NY Yankees

Description: Depicted are boxplots for the monthly excess returns on 15 popular anomaly
portfolios. Win is “Yes” when the NY Yankees win a majority of their baseball games in
the prior month and “No” otherwise. The sample period represents the 600 months from
January 1974 to December 2023.

Interpretation: Boxplots depict the median, first and third quartiles, and outliers. These
are nonparametric visualizations that make it easy see the preexisting differences in the
distributions of excess returns between the treatment (Yes) and the control (No) groups.
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Figure 2: Boxplots of monthly excess returns by sample group for the NY Mets

Description: Depicted are boxplots for the monthly excess returns on 15 popular anomaly
portfolios. Win is “Yes” when the NY Mets win a majority of their baseball games in the
prior month and “No” otherwise. The sample period represents the 600 months from
January 1974 to December 2023.

Interpretation: Boxplots depict the median, first and third quartiles, and outliers. These
are nonparametric visualizations that make it easy see the preexisting differences in the
distributions of excess returns between the treatment (Yes) and the control (No) groups.
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Table 1: Excess returns and NY Yankees’ win-loss record

Anomaly µ0 µ1 µ2 Ad j . R2

Panel A: Strategies performing significantly better

Momentum 0.759∗∗ 0.145 1.468∗∗ 0.011
[2.816] [0.425] [3.238]

Residual variance 0.133 −0.624 1.808∗∗∗ 0.015
[0.386] [−1.378] [3.397]

Variance 0.124 −0.623 1.786∗∗ 0.012
[0.346] [−1.304] [3.162]

Panel B: Strategies performing significantly worse

Book-to-market 1.082∗∗∗ 1.499∗∗∗ −0.997∗∗ 0.011
[5.207] [5.474] [−2.763]

Cashflow price 0.655∗∗∗ 0.937∗∗∗ −0.674∗ 0.008
[4.427] [4.911] [−2.428]

Earnings price 0.571∗∗∗ 0.818∗∗∗ −0.590∗ 0.007
[4.114] [4.558] [−2.235]

Investment 0.984∗∗∗ 1.362∗∗∗ −0.904∗∗ 0.018
[6.233] [6.530] [−3.121]

Long-term reversal 0.680∗∗ 1.445∗∗∗ −1.829∗∗∗ 0.027
[2.642] [4.080] [−4.175]

Market beta 0.220 0.652∗ −1.032∗ 0.006
[0.848] [2.002] [−2.272]

Short-term reversal 1.676∗∗∗ 2.088∗∗∗ −0.984∗ 0.006
[7.404] [6.404] [−2.552]

Size 0.341 0.981∗∗ −1.530∗∗∗ 0.021
[1.404] [2.982] [−3.735]

Description: Reported are the results from regressions

rt = µ0 + ϵt (1)

rt = µ1 +µ2wint−1 + ϵt , (2)

where the dependent variable, rt , is the percent excess return on an anomaly portfolio in
month t and the independent variable, wint−1, is a dummy variable set to one in months
where the NY Yankees win at least half of their baseball games and zero otherwise. Re-
ported in brackets below each estimate are T-statistics, corrected for heteroskedasticity and
autocorrelation using the methods of Newey and West (1987) and Andrews (1991). ***,
**, and * represent statistical significance at the 0.001, 0.01, and 0.05 levels, respectively.
The sample period represents the 600 months from January 1974 to December 2023.

Interpretation: The NY Yankees’ win-loss record has significant power to predict excess
returns on popular anomaly strategies assuming random sample selection.
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Table 2: Excess returns and NY Mets’ win-loss record

Anomaly µ0 µ1 µ2 Ad j . R2

Panel A: Strategies performing significantly better

Momentum 0.759∗∗ 0.272 1.642∗∗∗ 0.012
[2.816] [0.797] [3.851]

Net share issues 0.768∗∗∗ 0.489∗ 0.941∗∗ 0.010
[4.066] [2.351] [2.859]

Operating profitability 0.204 −0.213 1.405∗∗∗ 0.020
[0.996] [−0.919] [4.000]

Residual variance 0.133 −0.769∗ 3.040∗∗∗ 0.038
[0.386] [−2.034] [5.588]

Variance 0.124 −0.795∗ 3.098∗∗∗ 0.035
[0.346] [−1.979] [5.477]

Panel B: Strategies performing significantly worse

Investment 0.984∗∗∗ 1.236∗∗∗ −0.850∗∗∗ 0.013
[6.233] [6.543] [−3.322]

Long-term reversal 0.680∗∗ 1.356∗∗∗ −2.281∗∗∗ 0.036
[2.642] [4.433] [−6.007]

Market beta 0.220 0.808∗∗ −1.979∗∗∗ 0.024
[0.848] [2.814] [−4.483]

Short-term reversal 1.676∗∗∗ 1.976∗∗∗ −1.013∗ 0.005
[7.404] [7.106] [−2.365]

Size 0.341 0.968∗∗∗ −2.115∗∗∗ 0.035
[1.404] [3.446] [−5.590]

Description: Reported are the results from regressions

rt = µ0 + ϵt (1)

rt = µ1 +µ2wint−1 + ϵt , (2)

where the dependent variable, rt , is the percent excess return on an anomaly portfolio in
month t and the independent variable, wint−1, is a dummy variable set to one in months
where the NY Mets win at least half of their baseball games and zero otherwise. Reported
in brackets below each estimate are T-statistics, corrected for heteroskedasticity and au-
tocorrelation using the methods of Newey and West (1987) and Andrews (1991). ***,
**, and * represent statistical significance at the 0.001, 0.01, and 0.05 levels, respectively.
The sample period represents the 600 months from January 1974 to December 2023.

Interpretation: The NY Mets’ win-loss record has significant power to predict excess re-
turns on popular anomaly strategies assuming random sample selection.
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Table 3: Logistic regression results for the NY Yankees

Anomaly β0 β1 AME

Panel A: Strategies performing significantly better

Momentum −0.367∗∗∗ 0.040∗∗ 0.010∗∗

(0.085) (0.015) (0.004)
Residual variance −0.342∗∗∗ 0.039∗∗ 0.009∗∗

(0.084) (0.013) (0.003)
Variance −0.340∗∗∗ 0.034∗∗ 0.008∗∗

(0.084) (0.012) (0.003)

Panel B: Strategies performing significantly worse

Book-to-market −0.278∗∗ −0.053∗∗ −0.013∗∗

(0.085) (0.020) (0.005)
Cashflow price −0.295∗∗∗ −0.057∗ −0.014∗

(0.084) (0.025) (0.006)
Earnings price −0.299∗∗∗ −0.059∗ −0.014∗

(0.084) (0.027) (0.006)
Investment −0.242∗∗ −0.099∗∗∗ −0.024∗∗∗

(0.087) (0.029) (0.007)
Long-term reversal −0.297∗∗∗ −0.074∗∗∗ −0.017∗∗∗

(0.084) (0.018) (0.004)
Market beta −0.326∗∗∗ −0.033∗ −0.008∗

(0.083) (0.015) (0.004)
Short-term reversal −0.275∗∗ −0.035∗ −0.008∗

(0.086) (0.017) (0.004)
Size −0.318∗∗∗ −0.065∗∗∗ −0.016∗∗∗

(0.084) (0.018) (0.004)

Description: Reported are the results from logistic regressions

ln
�

Pr (wint−1 = 1 | rt)
1− Pr (wint−1 = 1 | rt)

�

= β0 + β1rt , (4)

where the dependent variable is the log odds ratio for the probability of treatment group
selection and the dependent variable is the percent excess return on an anomaly portfolio
in month t. The average marginal effect (AME) represents the change in the probability of
treatment group selection given a change in the monthly excess return, ∆Pr(wint−1=1|rt )/∆rt .
Standard errors are reported in parentheses below each estimate. ***, **, and * represent
statistical significance at the 0.001, 0.01, and 0.05 levels, respectively. The sample period
represents the 600 months from January 1974 to December 2023.

Interpretation: There is a significant relation between the sample selection probability
and the monthly excess return. Fitted values are propensity scores.
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Table 4: Logistic regression results for the NY Mets

Anomaly β0 β1 AME

Panel A: Strategies performing significantly better

Momentum −0.920∗∗∗ 0.048∗∗ 0.010∗∗

(0.094) (0.017) (0.003)
Net share issues −0.924∗∗∗ 0.063∗∗ 0.013∗∗

(0.094) (0.024) (0.005)
Operating profitability −0.907∗∗∗ 0.083∗∗∗ 0.017∗∗∗

(0.092) (0.024) (0.005)
Residual variance −0.927∗∗∗ 0.075∗∗∗ 0.015∗∗∗

(0.094) (0.016) (0.003)
Variance −0.921∗∗∗ 0.067∗∗∗ 0.014∗∗∗

(0.094) (0.015) (0.003)

Panel B: Strategies performing significantly worse

Investment −0.788∗∗∗ −0.095∗∗ −0.020∗∗

(0.092) (0.032) (0.006)
Long-term reversal −0.852∗∗∗ −0.103∗∗∗ −0.021∗∗∗

(0.092) (0.022) (0.004)
Market beta −0.878∗∗∗ −0.068∗∗∗ −0.014∗∗∗

(0.091) (0.018) (0.004)
Short-term reversal −0.809∗∗∗ −0.038∗ −0.008∗

(0.092) (0.019) (0.004)
Size −0.878∗∗∗ −0.098∗∗∗ −0.020∗∗∗

(0.092) (0.021) (0.004)

Description: Reported are the results from logistic regressions

ln
�

Pr (wint−1 = 1 | rt)
1− Pr (wint−1 = 1 | rt)

�

= β0 + β1rt , (4)

where the dependent variable is the log odds ratio for the probability of treatment group
selection and the dependent variable is the percent excess return on an anomaly portfolio
in month t. The average marginal effect (AME) represents the change in the probability of
treatment group selection given a change in the monthly excess return, ∆Pr(wint−1=1|rt )/∆rt .
Standard errors are reported in parentheses below each estimate. ***, **, and * represent
statistical significance at the 0.001, 0.01, and 0.05 levels, respectively. The sample period
represents the 600 months from January 1974 to December 2023.

Interpretation: There is a significant relation between the sample selection probability
and the monthly excess return. Fitted values are propensity scores.
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Table 5: Critical values from the randomization distribution for the NY Yankees

Anomaly 10% 5% 1% 0.1%

Panel A: Strategies performing significantly better

Momentum 3.929 4.241 4.823 5.476
Residual variance 4.372 4.703 5.351 6.082
Variance 4.165 4.506 5.158 5.888

Panel B: Strategies performing significantly worse

Book-to-market 3.975 4.328 4.974 5.732
Cashflow price 3.513 3.842 4.484 5.231
Earnings price 3.454 3.799 4.456 5.144
Investment 4.703 5.040 5.663 6.385
Long-term reversal 5.461 5.784 6.379 7.083
Market beta 3.507 3.865 4.536 5.288
Short-term reversal 3.475 3.817 4.449 5.141
Size 4.936 5.275 5.912 6.694

Description: Reported are the critical values for the T-distribution calculated by means
of randomization and Monte Carlo simulation. The Monte Carlo simulation calculates
100,000 treatment assignments Di = (dt , . . . , dT ), where each dt follows a Bernoulli distri-
bution with endogenous success probability such that dt ∼ Bin (1, pt). The pt is a propen-
sity score calculated as a fitted value from logistic regression (4). The randomization
distribution is calculated by estimating the regression

rt = µ1 +µ2dt + ϵt (6)

100, 000 times where the dependent variable, rt , is the percent excess return on an
anomaly portfolio in month t. These critical values represent the upper 90%, 95%, 99%,
and 99.9% of the absolute value of 100, 000 T-statistics calculated for µ2. These T-statistics
are corrected for heteroskedasticity and autocorrelation using the methods of Newey and
West (1987) and Andrews (1991). The sample period represents the 600 months from
January 1974 to December 2023.

Interpretation: An endogenous treatment assignment renders the usual T-distribution
invalid. With 598 degrees of freedom, the 10%, 5%, 1%, and 0.1% critical values for the
standard T-distribution of 1.647, 1.964, 2.584, and 3.307 are too small.
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Table 6: Critical values from the randomization distribution for the NY Mets

Anomaly 10% 5% 1% 0.1%

Panel A: Strategies performing significantly better

Momentum 4.267 4.592 5.184 5.839
Net share issues 3.798 4.119 4.749 5.461
Operating profitability 4.780 5.103 5.711 6.451
Residual variance 6.227 6.557 7.184 7.899
Variance 6.051 6.388 7.010 7.774

Panel B: Strategies performing significantly worse

Investment 4.440 4.793 5.473 6.190
Long-term reversal 6.431 6.761 7.387 8.110
Market beta 5.326 5.682 6.349 7.096
Short-term reversal 3.542 3.897 4.554 5.272
Size 6.161 6.500 7.147 7.921

Description: Reported are the critical values for the T-distribution calculated by means
of randomization and Monte Carlo simulation. The Monte Carlo simulation calculates
100,000 treatment assignments Di = (dt , . . . , dT ), where each dt follows a Bernoulli distri-
bution with endogenous success probability such that dt ∼ Bin (1, pt). The pt is a propen-
sity score calculated as a fitted value from logistic regression (4). The randomization
distribution is calculated by estimating the regression

rt = µ1 +µ2dt + ϵt (6)

100, 000 times where the dependent variable, rt , is the percent excess return on an
anomaly portfolio in month t. These critical values represent the upper 90%, 95%, 99%,
and 99.9% of the absolute value of 100, 000 T-statistics calculated for µ2. These T-statistics
are corrected for heteroskedasticity and autocorrelation using the methods of Newey and
West (1987) and Andrews (1991). The sample period represents the 600 months from
January 1974 to December 2023.

Interpretation: An endogenous treatment assignment renders the usual T-distribution
invalid. With 598 degrees of freedom, the 10%, 5%, 1%, and 0.1% critical values for the
standard T-distribution of 1.647, 1.964, 2.584, and 3.307 are too small.
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Appendix

R Computer Code

Below are major segments of the R computer code used in the study. The R
code uses functions from the packages: data.table, lmtest, margins,
sandwich, and zoo.

#Load anomaly returns and calculate excess returns

anomalys <- list(
‘Accruals‘ = fread(
cmd = "unzip -p Portfolios_Formed_on_AC_CSV.zip",
skip = 751, nrows = 729,
select = list(character = 1, numeric = c(7, 16))
),
...
)

lapply(anomalys, setnames, c("month", "lo", "hi"))

anomalys <- rbindlist(anomalys, idcol = "anomaly")

anomalys[TRUE, ret := lo - hi]

anomalys[anomaly %chin% negative_returns, ret := hi - lo]

#Load Retrosheet game log data

gamelogs <- lapply(seasons, fread, header = FALSE,
select = list(character = c(1, 4, 7, 14),
integer = c(10, 11)), col.names = c("date", "awayteam",
"hometeam", "completed", "awayscore", "homescore"))

gamelogs <- rbindlist(gamelogs)

gamelogs[completed != "", date := substr(completed, 1, 8)]

#Select data on Yankees (NYA) and Mets (NYN)

gamelogs <- list(
NYA = gamelogs[hometeam == "NYA" | awayteam == "NYA"],
NYN = gamelogs[hometeam == "NYN" | awayteam == "NYN"])



28 Geoffrey Peter Smith

gamelogs <- rbindlist(gamelogs, idcol = "team")

#Calculate total wins and total games by team and month

gamelogs[TRUE, winteam := fifelse(homescore > awayscore,
hometeam, awayteam)]

gamelogs[TRUE, wingame := fifelse(team == winteam, 1, 0)]

gamelogs[TRUE, playgame := 1]

gamelogs <- gamelogs[TRUE, .(nwins = sum(wingame),
ngames = sum(playgame)), by = .(team, month)]

#Calculate lagged dummy variable and merge with anomalys

gamelogs[TRUE, win := fifelse(nwins / ngames >= 0.50,
"Yes", "No", "No")]

setorder(gamelogs, team, month)

gamelogs[TRUE, win := shift(win, type = "lag"), by = team]

anomalys <- gamelogs[anomalys, on = "month",
allow.cartesian = TRUE]

anomalys <- split(anomalys, by = c("team", "anomaly"))

#Estimate logistic regressions

logistic_regression <- lapply(anomalys, function(x)
glm(win ~ ret, family = binomial(link = "logit"),
data = x))

#Calculate propensity scores and merge with anomalys

binps <- lapply(logistic_regression, fitted.values)

anomalys <- mapply(cbind, anomalys, pr = binps,
SIMPLIFY = FALSE)
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#Estimate regressions

regression_1 <- lapply(anomalys, function(x)
lm(formula = ret ~ 1, data = x))

lapply(regression_1, coeftest, vcov = kernHAC)

regression_2 <- lapply(anomalys, function(x)
lm(formula = ret ~ win, data = x))

lapply(regression_2, coeftest, vcov = kernHAC)

#Monte Carlo simulations

simulation_function <- function(anomaly) {
model <- lm(ret ~ rbinom(600, 1, pr), data = anomaly)
tstat <- coeftest(model, vcov = kernHAC)[2, "t value"]
abs(tstat)
}

simulation <- lapply(anomalys, function(anomaly)
replicate(100000, simulation_function(anomaly)))

lapply(simulation, quantile,
probs = c(0.90, 0.95, 0.99, 0.999))
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