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ABSTRACT

This paper starts by successfully replicating all the main results
in Kelly and Pruitt (2013) for the return on the market—and
providing some evidence of market premium predictability—
based on their original empirical choices in the 1930-2010
sample. However, the evidence of market premium predictabil-
ity, in particular, essentially disappears by making any one of
the following changes: (i) Updating the sample to June 1926
– December 2019; (ii) not taking logs of the book-to-markets
used as regressors; (iii) not dividing book-to-markets by their
time-series standard deviations; or (iv) not taking one extra
book-to-market lag (for monthly forecasts). In summary, I find
no evidence that the procedure generates a valid forecasting
model of market premiums with persistently positive out-of-
sample R2 in the full 1926-2019 sample, especially since the
Oil Shock (or early 2000).
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Welch and Goyal (2008) argue that in-sample (IS) predictability is insuffi-
cient to validate forecasting models of the market premium. They propose
a higher hurdle: In summary, apart from being significant in sample, the
model should have out-of-sample (OOS) performance that is positive over
the entire sample period, especially towards the end, since the Oil Shock.
Conditioned on this hurdle and after analyzing the performance of all
typical predictors in the literature, they essentially conclude that no valid
forecasting model of the market premium exists. The present paper adds to
this discussion by investigating if the partial least squares (PLS) forecasts
based on disaggregated book-to-market (BM) ratios in Kelly and Pruitt
(2013) (henceforth, KP) finally overcome the hurdle of Welch and Goyal
(2008). The short answer, based on the most recent evidence, is no.

Before reaching this conclusion, I successfully replicate the main results
of KP for the return on the market—and also find some evidence of market
premium predictability—in their original 1930-2010 sample and based on
their other empirical choices.1 I also find some evidence of predictability
based on different empirical choices. However, the evidence of market
premium predictability, in particular, essentially disappears by making any
one of the following changes: (i) Updating the sample to June 1926 –
December 2019; (ii) failing to take logs of the BMs used as regressors;
(iii) failing to divide (log) BMs by their time-series standard deviations,
as I explain later; or (iv) failing to take one extra BM lag (for monthly
forecasts). As I will show, the PLS procedure of KP fails to generate a
valid forecasting model of the equity premium especially due to the poor
performance of these forecasts since the Oil Shock and for the last 20 years
in the full sample.

The paper proceeds as follows. Sections 1 and 2 briefly describe the PLS
procedure and data, respectively. Section 3 replicates KP in their original
1930-2010 sample, revealing the importance of their explicit choices of
using BMs in logs as regressors and market returns as the forecasting target,
and their less explicit choice of dividing BMs by their time-series standard
deviations prior to the estimation. Section 4 extends the sample to 1926-
2019, reveals the importance of the sample period and OOS split date
choices for all forecasts, and the importance of the extra BM lag for the

1In fact, Seth Pruitt kindly shared the Matlab code in KP, market returns, and monthly
BMs of 6, 25, and 100 portfolios sorted by market capitalization (ME) and BM that they
create. Hence, I can also obtain their results exactly by running their code on their data.



Dissecting market expectations in the cross-section of book-to-market ratios 3

forecasts in monthly frequency. Section 5 concludes.

1 PLS estimation

This section briefly presents the PLS procedure of KP and highlights a few
points that can be unclear in their paper. I refer readers to KP for other
details. Essentially, the “axiomatic” theoretical claim in KP is that a single
factor, Ft , drives (one-period) expected log returns, µi,t , and also drives
the expected return on equity (ROE), gi,t , of all individual assets i,2

µi,t = Et

�

ri,t+1

�

= γi,0 + γi Ft , (1)

gi,t = Et

�

roei,t+1

�

= δi,0 +δi Ft + εi,t . (2)

Next, based on Vuolteenaho (2002), KP manipulate these equations into

bmi,t = Φi,0 +Φi Ft + εi,t , (3)

where bmi,t is the log BM ratio of asset i. Based on many assets, KP argue
that the expected return on the market should be estimated via the three
ordinary least squares regressions that follow:

1. Run a time-series regression of the (log) BMs of each asset i, bmi,t ,
on the (future) return on the market (their forecasting target),

bmi,t = Φ̂i,0 + Φ̂i yt+h + ei,t , (4)

where yt+h is the future market return at frequency h (1-month or
1-year).

2. Run a cross-sectional regression, for each period, t, of all BMs (at
once) on the loadings estimated in the first stage, Φ̂i , in Eq. (4),

bmi,t = ĉt + F̂t Φ̂i +ωi,t , (5)

which results in an estimate for the latent factor, Ft , for each period.

3. Run a standard predictive regression of returns on the factor esti-
mated in the second stage, F̂t ,

yt+h = β0 + β F̂t + ut+h. (6)
2In fact, KP start with the assumption of a (KF × 1) vector of factors, Ft . Hence, the

model generalizes to this setting. They also first state the model in terms of expected cash
flow growth (not ROE). But the accounting relation in Vuolteenaho (2002)—which KP use
exactly to explain their choice of regressors—is based on ROE (not on cash flow growth).
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BM standardization:
An important point not explicitly mentioned by KP is that they do not run the
exact linear regressions above. Instead, KP divide each BM by its respective
time-series standard deviation, σvi , before running the regressions.3 The
estimated counterparts of Eq. (4) and Eq. (5) are

bmi,t

σvi
= Φ̂si,0 + Φ̂si yt+h + esi,t , (7)

bmi,t

σvi
= ĉs,t + F̂s,t Φ̂si +ωsi,t , (8)

while F̂s,t substitutes F̂t as the (standardized) estimate of the latent factor,
Ft , in Eq. (6). For the recursive estimation, σvi becomes time-varying
(because the samples change over time): The value is calculated recursively,
over the sample that is inside the information set when the forecast is
created.4 From a strict asset pricing perspective, this adjustment implies
that the empirical results of KP rely on a possible theoretical linear relation
between the latent factor and ratios between BMs and standard deviations,
not exactly BMs (which is what the theories mentioned by KP seem to
imply).

2 Data

All data are available from June 1926 to December 2019. The market
return (RM) is the monthly return on the Center for Research in Security
Prices index portfolio. The market premium (MP) subtracts from this value
the risk-free rate from Kenneth French data library. I transform both to
continuous compounding to match KP.

The main forecasts in KP use monthly BMs of portfolios formed by
market capitalization (ME) and BM as regressors. The book equity (BE)

3The procedure is not mentioned by KP, but it is implemented in their Matlab code and
the regressors are assumed to be standardized in Kelly and Pruitt (2015).

4In any training sample, each BM is scaled by its sample volatility in that training
sample. The scaling variable for each BM series is constant in any given sample and only
changes every period because the sample changes every period (yielding a new σvi). The
fact that σvi updates over time is a peculiar feature of the OOS procedure. In addition, I
include BMs from months t − 11 to t − 1 in this calculation for annual forecasts, although
these BMs are never used in the estimation and it is not obvious that they should be included
in the calculation.
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and ME data necessary to calculate these BMs are indirectly available from
Kenneth French’s website:5 Kenneth French reports average ME and the
number of stocks in each double sorted portfolio by ME and BM in monthly
frequency. Their product is the (total) ME of the ME/BM portfolio. However,
the data follow a beginning-of-period convention: ME in July is actually for
(the end of) June. There are also two versions of monthly value-weighted
BMs in the same spreadsheet (with the same timing convention). One
version scales the portfolio BE by its ME in June. Hence, every July (and
only in July), this series coincides with the BM of the portfolio (and given
the timing convention, this is the BM for June). Therefore, I reverse the
calculation by multiplying the calculated ME by the BM for June (both
reported as July) to obtain the total BE of the portfolio for June, which is
fixed for a year. Next, the procedure is the one described by KP: Divide BE
(which changes yearly) by the ME (changing monthly) for the remaining
months to obtain monthly BMs.

BMs with one extra lag:
In Section 4, I show that taking one extra lag of the BMs improves the
performance of the monthly estimates, while having negligible impact at
the annual frequency.6 Hence, I use BMs with one extra lag in the entire
paper, unless stated otherwise. This is equivalent to assume that the BM
data follow an end-of-period timing convention, instead of the one that I
describe above.

3 PLS and some empirical choices in the original sample

In addition to replicating KP in their original 1930-2010 sample and with
all their empirical choices, this section shows that three of these choices
improve the PLS performance: (i) The choice of forecasting the return on
the market, as opposed to the market premium; (ii) the choice of using
standardized instead of regular BMs; and (iii) the choice of using BMs in
logs and not in levels. In the entire paper, I also ignore certain series of

5The Python code on my website that generates all results in the paper also implements
this calculation.

6Although unreported in this version, the extra lag also makes the performance more
similar to the one in KP, based on their original empirical choices.
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BMs with more than 20% missing data in a given subsample.7 Table 1
summarizes the performances of 6 groups of models based on these choices:
It starts with the choices in KP for market returns at the top of the table,
relaxes (ii) and (iii) (one at a time) in the next two groups, and repeats
these choices for the market premium in the last three (MP) groups.

Table 1 has the same fields as the main table (Table I) in KP, but without
the extra p-values. It reports in-sample R2 (ISy and ISm, for yearly and
monthly returns) and OOS R2 (OOSy and OOSm) for the third-step PLS
regression in Eq. (6); the respective in-sample p-values of the β coefficients
with Newey and West (1987) standard errors (12 lags or one lag, for
annual or monthly returns, respectively); and—if the OOS R2 is positive—
the respective p-values of the ENC-NEW forecast encompassing test of
Clark and McCracken (2001) with Newey-West standard errors with 12
lags for annual returns.8 The main restriction in interpreting the values
in this table is that the OOS split is always January 1980, and the sample
ending is always 2010. Section 4 investigates other split and ending dates
in 1926-2019.

The first column in Table 1 identifies the forecasting target (RM or
MP), the third column shows the number of ME/BM portfolios used (6,
25, or 100), and the second column identifies the BMs used as regressors
(bmσ,t−1, bmt−1, or BMσ,t−1): In this table, the BM regressors always have
one extra lag (with subscript t − 1). The BMs in logs (in lowercase) are
either divided by their time-series standard deviations (bmσ,t−1) or not
(bmt−1). But the standardized BMs (indicated by the subscript σ) can also
be in levels (BMσ,t−1).

3.1 Market return forecasts

The six [RM, bmσ,t−1]models in the first three rows (in monthly and yearly
frequency) closely replicate KP based on their exact empirical choices: All
of them deliver positive and significant performances in this case. Four

7This restriction is not mentioned by KP, but it is included in their Matlab code. It
tends to systematically remove some portfolios with more diverging risk proxies from the
regressors, such as extreme deciles of “small-growth” and “big-value”, and mostly benefits
the recursive performance at the beginning of the sample (there is no sizable effect in the
full sample). In addition, the restriction is only biding for 100 ME/BM portfolios (not 25 or
6).

8The ENC-NEW is not a significance test for the OOS R2. Hence, even if the OOS R2 is
negative, the statistic is often significant.
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Table 1: Predictability of the 1-year or 1-month return on the market (RM) or market
premium (MP) from January 1930 to December 2010.

ISy R2 p OOSy R2 p ISm R2 p OOSm R2 p

RM

bmσ,t−1

6 8.53 0.00 6.77 <0.01 0.58 0.03 0.67 <0.05
25 12.31 0.00 8.06 <0.01 0.89 0.01 0.73 <0.01
100 19.83 0.00 14.07 <0.01 2.53 0.01 0.63 <0.05

bmt−1

6 3.57 0.14 5.06 <0.05 0.21 0.39 -0.05 -
25 5.63 0.09 5.90 <0.05 0.37 0.20 -0.96 -
100 14.31 0.01 5.69 <0.05 2.25 0.05 -0.61 -

BMσ,t−1

6 6.77 0.01 5.70 <0.01 0.27 0.19 0.19 -
25 19.51 0.00 0.40 <0.01 2.60 0.06 -0.07 -
100 26.42 0.00 -2.86 - 3.24 0.04 -0.29 -

MP

bmσ,t−1

6 5.92 0.02 0.73 <0.05 0.46 0.06 0.31 <0.05
25 9.83 0.01 2.16 <0.01 0.74 0.02 0.09 <0.05
100 18.14 0.00 9.26 <0.01 2.41 0.03 -0.19 -

bmt−1

6 6.95 0.04 -10.60 - 0.76 0.01 -0.96 -
25 14.40 0.00 -20.05 - 0.91 0.00 -2.55 -
100 19.18 0.00 -7.60 - 2.34 0.04 -1.63 -

BMσ,t−1

6 5.52 0.03 1.29 <0.05 0.81 0.05 -1.00 -
25 19.71 0.00 -5.07 - 2.86 0.09 -0.42 -
100 27.93 0.00 -7.25 - 3.02 0.06 -0.55 -

Note: The table reports IS and OOS R2 for yearly (ISy , OOSy ) or monthly forecasts (ISm, OOSm);
in-sample p-values of the slope coefficients of predictive regressions with Newey and West (1987)
standard errors (12 lags or one lag, for annual or monthly returns, respectively); and p-values of the
OOS forecast encompassing test of Clark and McCracken (2001) with Newey-West standard errors
with 12 lags for annual returns (unreported, as “-”, if the p-value is larger than 0.1 or if the OOS
R2 is negative). The OOS split is January 1980. The regressors are the BMs of the 6, 25, or 100
ME/BM portfolios in lowercase if the BMs are in logs, and with subscript σ if they are divided by their
time-series standard deviations. Subscript t − 1 indicates that BMs have one extra lag.

Interpretation: The first rows [RM, bmσ,t−1] replicate KP and confirm that the performance
is better exactly for (i) the return on the market, (ii) with BMs in logs, (iii) with standardized
BMs, and (iv) in annual frequency, as in KP. The lower half of the table shows that market
premium predictability essentially disappears if we relax any one of the empirical choices
in KP.
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models even have slightly larger OOS R2 in Table 1 than in KP. The other
groups of market return models relax one of the empirical choices in KP
at a time: The six [RM, bmt−1] models relax the BMs standardization and
the six [RM, BMσ,t−1] models relax the BM log transformation.

As I explain in Section 4, the 1930-2010 sample and 1980 split date are
particularly favorable for the PLS forecasts: Although the IS performance is
not always significant, even the three annual [RM, bmt−1]models based on
BMs in logs but not standardized deliver positive OOS performance in this
case. And two of the annual [RM, BMσ,t−1]models in the subsequent three
rows (for 6 and 25 portfolios), based on standardized BMs in levels, also
deliver positive OOS performance. On the other hand, none of the monthly
models in these other two groups deliver positive OOS performance.

In summary, standardization and especially the log transformation of
BMs improve the PLS forecasts of market returns in this sample.9 Indeed,
the main conclusion of persistently positive OOS R2 in KP (based on 100
portfolios) only holds if the BMs are in logs. Otherwise, both monthly and
yearly [RM, BMσ,t−1] models deliver negative OOS R2.

3.2 Market premium forecasts

The only group of market premium models with mostly positive OOS R2

is the [MP, bmσ,t−1] in the first three MP rows. These are the equivalent
of the standard models in KP for market returns. However, even in this
group, the monthly forecasts based on 100 portfolios have negative OOS
R2, while the other models have positive but often small OOS R2. With
respect to all remaining models in the other groups, none delivers positive
OOS R2, except for the annual [MP, BMσ,t−1] with 6 portfolios: 1.29% OOS
R2 (significant at 5%).

In summary, if we relax either of the two BM transformations in this
table (standardization or logs), the evidence of market premium predictabil-
ity essentially disappears. In addition, the OOS R2 of the market premium
models in Table 1 are proportional to, but substantially lower than the
OOS R2 of the market return models, for the same empirical choices. This
(together with the analysis in Section 4) suggests that the other important
empirical choice to obtain the results in KP is to use market returns instead
of market premiums as forecasting targets.

9A previous version of this paper shows that non-standardized BMs deliver less prob-
lematic forecasts after 2010.
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4 Extended sample and other empirical choices

This section extends the sample to June 1926 – December 2019 and in-
vestigates the importance of three other empirical choices: (i) The sample
period, (ii) the OOS split date, and (iii) the use of BMs with one extra lag.
I start by reporting the results for the 1926-2019 sample in Table 2, and
comparing them with Table 1 for the baseline empirical choices in KP, [RM,
bmσ,t−1].

As I will show, one of the most curious conclusions from Table 2 is that
PLS delivers better monthly forecasts when BMs contain one extra lag. The
explanation is two-fold: First, monthly innovations in BMs are essentially
negative of the previous month return, because BE is fixed 11 months per
year. Second, market returns have small positive autocorrelation at one
month lag (de Oliveira Souza, 2020). Hence, skipping one month removes
the confounding effect of negative and positive prediction. But for returns
in annual frequency, this confounding effect does not exist and there is
little impact on the forecasts.

Market returns:
As before, the six [RM, bmσ,t−1] models in the first three rows of Table 2
reflect the baseline empirical choices of KP. All these models have positive
OOS R2, based on the 1980 OOS split of the 1926-2019 sample: The results
are weaker, but similar to the ones in Table 1. The [RM, bmσ,t] models in
the next three rows are equivalent to the baseline models, except that the
BM regressors do not contain the extra lag. In line with the explanation in
the previous paragraph, removing the extra lag has almost no effect on the
annual forecasts (which have slightly higher OOS R2 in this case), while
the monthly forecasts have lower OOS R2. In fact, the only monthly model
with non-negative OOS R2 is based on 6 portfolios in this case.

Market premiums:
The other models at the bottom of Table 2 are the market premium equiva-
lents of the models of market return (at the top). The six [MP, bmσ,t−1]
models reveal that, with respect to the market premium, the OOS evidence
supporting the baseline PLS forecasts of KP in Table 1 largely disappears
by simply updating the sample: The only model with positive OOS R2 in
the extended sample (which is also challenged in Section 4.1) is based on
100 BMs in annual frequency. Finally, the effect of removing the extra BM
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Table 2: Predictability of the 1-year or 1-month return on the market (RM) or market
premium (MP) from June 1926 to December 2019.

ISy R2 p OOSy R2 p ISm R2 p OOSm R2 p

RM

bmσ,t−1

6 7.65 0.00 4.05 <0.01 0.40 0.06 0.34 <0.05
25 9.59 0.00 2.05 <0.01 0.57 0.02 0.15 <0.05
100 17.45 0.00 8.21 <0.01 2.61 0.01 0.34 <0.05

bmσ,t

6 7.17 0.01 4.11 <0.01 0.43 0.05 0.14 <0.05
25 9.08 0.00 2.24 <0.01 1.11 0.00 -0.50 -
100 18.39 0.00 8.66 <0.01 3.90 0.00 -0.31 -

MP

bmσ,t−1

6 5.28 0.03 -2.66 - 0.28 0.14 -0.10 -
25 7.21 0.02 -5.37 - 0.43 0.06 -0.50 -
100 16.33 0.00 2.76 <0.05 2.53 0.03 -0.35 -

bmσ,t

6 5.02 0.03 -2.34 - 0.36 0.11 -0.42 -
25 6.94 0.02 -5.03 - 1.39 0.00 -1.72 -
100 16.44 0.00 3.09 <0.05 3.71 0.00 -0.92 -

Note: The table reports IS and OOS R2 for yearly (ISy , OOSy ) or monthly forecasts (ISm, OOSm);
in-sample p-values of the slope coefficients of predictive regressions with Newey and West (1987)
standard errors (12 lags or one lag, for annual or monthly returns, respectively); and p-values of the
OOS forecast encompassing test of Clark and McCracken (2001) with Newey-West standard errors
with 12 lags for annual returns (unreported, as “-”, if the p-value is larger than 0.1 or if the OOS R2

is negative). The OOS split is January 1980. The regressors are the BMs of the 6, 25, or 100 ME/BM
portfolios, all in lowercase and with subscriptσ because they are divided by their time-series standard
deviations and in logs. The subscripts t − 1 or t, respectively, indicate BMs with one extra lag or not.

Interpretation: PLS with the empirical choices in KP, [RM, bmσ,t−1], still delivers positive
performances in the full sample. But the market premium predictability essentially dis-
appears, even with these choices. The extra BM lag improves the monthly forecasts, but
slightly impairs the yearly ones.
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lag in the [MP, bmσ,t] models is again to obtain slightly higher OOS R2

for the annual forecasts, but even more negative OOS R2 for the monthly
forecasts.

4.1 Sample period and OOS split choices

This section analyzes time variation in predictability, considering the base-
line forecasts of KP (with standardized BMs of 100 portfolios, in logs, and
with one extra lag as regressors). These are the models (in annual fre-
quency) that appear to have positive OOS R2 for the market premium in
Table 2. However, as I will show, these forecasts have underperformed the
historical mean for about two decades. The (unreported) reason is that
these forecasts are frequently below the historical average since the start of
this century, while realized returns are often above average: The procedure
in KP correctly predicts the negative returns of the 2002 downturn and
the financial crisis, but it also keeps mistakenly predicting a series of low
returns that do not materialize.

The left-hand panel of Fig. 1 replicates the main graphs in Welch and
Goyal (2008), starting in 1945. They display the cumulative squared
prediction errors of the prevailing mean minus the cumulative squared
prediction error of the standard PLS model with 100 portfolios (cumulative
∆SSE). As in Welch and Goyal (2008), the units are not intuitive (and
unreported here), but the pattern is: Increases in the cumulative ∆SSE
graph imply that the PLS predicts returns better in that period, otherwise,
the mean is a better prediction. Hence, it is possible to adjust starting and
ending dates to check the performance in different subperiods.

For example, consider the bottom graph (market premium in annual
frequency). If we start at the peak, around 1975 corresponding to the
Oil Shock, we would have to wait until around 2010 (the final date in
KP’s sample) for the forecasts to outperform the mean. And this positive
performance would only hold for the years around 2010. In contrast, the
cumulative ∆SSE is very low around 1980. Hence, the split date of KP
provides the opposite example: Starting in 1980, almost any ending date
results in positive OOS performance.

For comparison, the right-hand panel of Fig. 1 also displays the corre-
sponding graphs reported by Kelly and Pruitt (2013), for the OOS R2 by
sample split date. In all graphs, the (dark) navy lines are for the full sample.
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Figure 1: Out-of-sample statistics by sample split date for recursive forecasts of 1-year or
1-month return on the market or market premium based on BMs of 100 portfolios.

Description: The left-hand side graphs (cum ∆SSE) show the cumulative sum of squared
forecasting errors of the historical mean minus the one from the model since 1945. An
increase in the line indicates that the model outperforms the historical mean in that period.
The right-hand side graphs show the OOS R2 by sample split date. The graphs are for the
market return in monthly, RMm, or yearly frequency, RMt , and for the market premium
forecasts (M Py and M Pm). The (dark) navy lines in each graph are for the full 1926-2019
sample. The (light) orange lines are their equivalent for the 1930-2010 subsample of KP.
There are more extreme values outside the bounds in each graph (unreported for scaling
reasons).

Interpretation: Both the OOS split and sample ending choices are consequential. For
the 1980 OOS split in KP, the OOS performance of market premium forecasts in annual
frequency is mildly positive if the sample ends in 2019 (OOS R2 graph), and for most other
ending dates (cum ∆SSE graph). But for the 1975 Oil Shock split date suggested by Welch
and Goyal (2008), the annual market premium forecasts only outperform the mean for
samples ending around 2010 (the ending in KP).
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The (light) orange lines are for the 1930-2010 sample of KP.10 The graphs
display results for market return forecasts in yearly or monthly frequency
(respectively RMy or RMm), and equivalently for market premium forecasts
(M Py or M Pm).

Market return:
Based on the top (RM) graphs on the right-hand panel of Fig. 1, the
performance of the market return forecasts in the full sample (the navy
lines) is less stable than the results based on the sample in KP (the orange
lines). The monthly forecasts have negative OOS R2 for almost all recent
split dates after around 1985. In addition, the OOS R2 of the annual
forecasts plummets around 2010. However, the cumulative ∆SSE graphs
still tend to have positive drifts since around 1950, especially in annual
frequency. This indicates that PLS could still be useful to forecast the annual
return on the market, despite its performance in the last 20 years.

Market premium:
The PLS forecasts of the market premium are substantially more prob-
lematic: The OOS R2 on the right-hand side graphs is either negative for
monthly forecasts or essentially zero for yearly forecasts based on most
OOS split dates in the full sample. The increases in cumulative ∆SSE for
other ending dates are often followed by decreases of similar magnitudes
and the overall drifts are close to zero, especially in monthly frequency.
From this perspective, the PLS procedure implemented by KP provides, at
most, a marginally consistent model of market premium forecasting, only
in annual frequency, and negative since the Oil Shock, since 2002, and
strongly negative since the financial crisis. In summary, the PLS implemen-
tation of KP cannot generate a valid market premium model, according to
the hurdle in Welch and Goyal (2008).

In fact, both cumulative ∆SSE graphs in annual frequency show sharp
increases around the financial crisis, right before 2010, which explain the
extraordinary results in KP, and sharp decreases until today, which explains
the dismal results that I report. There are similar increases and decreases
in performance in many periods and this time variation in predictability

10There are more extreme values outside the bounds in each graph (unreported for
scaling reasons). The graphs start in 1945 to avoid very negative values for some models,
so that all graphs have the same scale (per frequency).
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seems to be an intrinsic feature of the estimates. This is one of the reasons
why the PLS fails the stability test of Welch and Goyal (2008).

4.1.1 Why PLS forecasts market returns but not the market premium

The identity in Vuolteenaho (2002)—which KP use exactly for returns—
relates BMs to excess returns (not to returns). According to this theory, BM
ratios contain information about excess returns (and the market premium
as a consequence). Hence, it seems surprising that the model fails to predict
exactly the market premium (while sometimes predicting the return on the
market). However, this seems to be an issue with the asset pricing theory in
Vuolteenaho (2002), not with the PLS procedure. According to the theory
in Berk (1995), in which BE is simply a proxy for expected cash flows,
BMs are, indeed, more closely related to expected returns (not only excess
returns, as in Vuolteenaho, 2002). This helps to explain the evidence in
the present paper.

5 Summary

With respect to the main question in the present paper, we learn that the
PLS method of KP does not deliver a forecasting model of the market
premium that overcomes the hurdle of Welch and Goyal (2008): None
of the forecasts have positive OOS R2 since the Oil Shock, even if some
models have positive performances during some periods.

We also learn that at least four empirical choices are crucial to obtain
the results reported by KP: (i) Forecasting the market return instead of the
market premium; (ii) the sample ending in 2010, right after the PLS strongly
outperforms the historical mean (in annual frequency), but before it starts
to underperform; (iii) using BMs divided by their standard deviations
(instead of untreated BMs) as regressors in that particular sample period;
and (iv) using BMs in logs. Finally, another crucial choice for monthly
forecasts in particular is (v) to use BMs with one extra lag as regressors.
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