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Abstract 

Much attention is paid to portfolio variance, but skewness is also important for both 
portfolio design and asset pricing. We revisit the empirical research on systematic 
skewness that we initiated 25 years ago. We analyze the out-of-sample evidence for 
the skewness risk premium presented in the literature including the recent work of 
Anghel et al. (2022). We also conduct an out-of-sample test and focus on the 
sensitivity of the risk premium estimate to different research choices. Overall, we 
find that the risk premium associated with systematic skewness is similar to the one 
reported in our original paper.  

 

Introduction 

The genesis of modern finance is often attributed to Markowitz (1952). We 
all know (and every textbook has a picture) of the mean-variance frontier. 
Markowitz makes an important qualification, however (p. 91). He realizes 
that if investor utility is a function of the mean, variance, and skewness, his 
famous portfolio optimization is only valid if ∂U/∂M3=0, where M3 is the 
third moment, or skewness in his terminology. Most investors care about 
downside risks. Further, asset returns are routinely non-normal, yet for 
decades, financial training has focused on the mean-variance frontier.  

Twenty-five years ago, in Harvey and Siddique (2000), we addressed what 
we considered a deficiency in modern finance. Too much attention was paid 
to mean-variance analysis and associated measures such as Sharpe ratios. 
Indeed, Sharpe ratios of different investment styles shows considerable 
variation. Why don’t all investors just choose the high Sharpe ratio styles? 
The highest Sharpe ratio styles often have the highest negative skew—which 
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is why the Sharpe ratio is high—and investors need to be rewarded for taking 
that downside risk.  

The economic foundation for asset pricing with skewness is strong. Indeed, 
adding a skew term is a simple expansion of the Sharpe (1964) capital asset 
pricing model (CAPM). Rubinstein (1973) and Kraus and Litzenberger 
(1976) saw the potential. In the basic CAPM, risk is defined as an asset’s 
contribution to the variance of a well-diversified portfolio (covariance).  In 
the CAPM with skewness, the definition is augmented. Risk also includes the 
asset’s contribution to the skewness of a well-diversified portfolio 
(coskewness).  

In the early 1990s, factor research exploded (see Harvey, Liu, and Zhu, 
2016). Empirical factors such as the value and size factors of Fama and 
French (1992) were added to the CAPM making the three-factor model the 
de facto asset pricing model. We saw an opportunity to conduct a horse-race 
between popular empirical factor models and the skewness CAPM, which is 
based on economic first principles.  

We also saw the opportunity to redo the standard mean-variance frontier. 
Our paper (Harvey and Siddique, 2000) presented a three-dimensional 
mean-variance-skew frontier. Slicing the frontier at a particular level of 
skewness delivers the classic mean-variance frontier. Slicing at a particular 
level of variance, however, shows that portfolios with more negative skew 
have higher expected returns.  

Our empirical work provided evidence which suggested that skew is 
important. We rejected the null hypothesis that the skew premium was zero. 
Our evidence suggested the premium was in the range of 200–300 basis 
points per annum. Our work also pointed to the sensitivity of the results to 
research design choices.  

Testing a model with three moments is more difficult than testing a model 
with two. Consider the issue of nonstationarity. Even the original tests of the 
CAPM by Fama and MacBeth (1973) allowed betas to be estimated over a 
five-year window. We realized that it was essential to allow for time variation 
in our measures of coskewness, or skew beta. The challenge is that even 
moments, such as variance and kurtosis, are highly persistent. Odd 
moments, such as expected return and skew, are not persistent and are 
subject to large estimation error. Another way to view this challenge is that 
whereas expected returns and skew can be positive or negative, variances are 
never negative.  

We were aware when we wrote our paper of the many research choices that 
needed to be made (see Harvey, 2017) in order to conduct a discussion of 
research choices and how they impact out-of-sample performance. For 
example, how many observations should be used in calculating the coskew 
measure? Indeed, how much information is in a historical measure of 
coskew? Suppose a company falls into a period of bad luck and suffers a 
substantial drop in its share price. A statistical estimate of the skewness 
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could be quite negative based on past performance, but assets are priced 
based on the expected (co)skew. Just because the ex post skew is negative 
does not mean the ex ante skew is negative.  

Another choice is how to treat missing values (i.e., what minimum number 
of values should we use to calculate the coskew?). These choices are the same 
faced by those who tested the original CAPM. In our case, the estimation is 
much more sensitive to these choices because of the third moment—that is, 
any noise is amplified by the power of three not two. 

More fundamentally, how do we even measure skew? The literature offers 
many choices. Consider the four measures detailed by Kim and White 
(2004),  

𝑆𝑆𝑆𝑆1 = (
𝑟𝑟𝑡𝑡 − 𝜇𝜇
𝜎𝜎

)3

𝑆𝑆𝑆𝑆2 =
𝑄𝑄3 + 𝑄𝑄1 − 2𝑄𝑄1

𝑄𝑄3 − 𝑄𝑄1

𝑆𝑆𝑆𝑆3 =
𝜇𝜇 − 𝑄𝑄2
𝐸𝐸|𝑦𝑦 − 𝜇𝜇|

𝑆𝑆𝑆𝑆4 =
𝜇𝜇 − 𝑄𝑄2
𝜎𝜎

 

 

where Q1, Q2, and Q3 represent quartiles. SK2 was originally proposed by 
Bowley (1920). SK3 is a generalization of SK2 proposed by Hinkley (1975).  

We proposed a direct measure of skew beta, 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆, 

𝛽𝛽
^
SKD𝑖𝑖 =

𝐸𝐸[𝜖𝜖𝑖𝑖,𝑡𝑡+1𝜖𝜖𝑀𝑀,𝑡𝑡+1
2 ]

�𝐸𝐸[𝜖𝜖𝑖𝑖,𝑡𝑡+12 ]𝐸𝐸[𝜖𝜖𝑀𝑀,𝑡𝑡+1
2 ]

 

where 𝜖𝜖𝑖𝑖 represents residuals from a market model regression and 𝜖𝜖𝑀𝑀 
represents the demeaned market excess return.  

We also noted another choice for skew beta estimation: an extension of the 
market model regression in which the model is augmented with the squared 
market return, and the resulting coefficient on the square is an alternative 
metric. 

Once the inputs are estimated, how should we test the model? Should we use 
Fama and MacBeth (1973) tests or the hedge portfolio technique? The latter 
would involve being long negative coskew stocks (which we called S−) and 
being short positive coskew stocks (S+), a technique pioneered by Fama and 
French (1992).  

Our research strategy was to 1) try different methods and 2) report all results 
in order to be fully transparent, allowing the reader to choose the method 
they thought was most appropriate.  
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One further complication arose. During the time of our research, CRSP had 
partially included NASDAQ stocks. Should we include these stocks or 
exclude? We chose to include this limited list of stocks.  

Twenty-five years later a rich research agenda linked to skewness exists.  
When we were writing our paper, we could not have imagined it would gather 
3,000 citations. Many of these papers (too many to cite) offered alternative 
research choices. Overall, the finding in these papers including the recent 
work of Anghel et al. (2022) suggest that a risk premium is associated with 
systematic skewness. Further, the effect has not gone away with time.  

 

Replications 

Replication plays an increasingly important role in financial economics 
Harvey (2020). Replication should not be confused with reproduction 
(reproducing the same result on the same historical data). Replication tests 
whether an effect still exists when applied to a different data set, such as a 
different country or recent out-of-sample data. A number of researchers have 
replicated our work on skewness. 

McLean and Pontiff (2016) studied the out-of-sample and post-publication 
predictability of 97 variables. Their important study shows that portfolio 
returns are 26% lower out of sample and 58% lower post publication. Their 
results are consistent with some degree of overfitting in the original studies. 
Their method used quintile-based sorts and the Fama and MacBeth (1973) 
method.  

McLean and Pontiff (2016) provided both a reproduction over the original 
sample and out-of-sample evidence. Their “reproduction” is not a 
reproduction in the usual sense because the data had changed (expansion of 
the CRSP database to include all NASDAQ stocks). Nevertheless, they were 
able to reproduce the premium in sample. McLean and Pontiff (2016) did 
not report statistics on the individual measures, but in private 
correspondence one of the authors wrote: “my recollection was that the out-
of-sample performance was also very good.” 

Chen and Zimmerman (2021) conducted a large-scale reproduction project. 
Again, this is not a reproduction in the usual sense given the change in data. 
They found a significant effect in sample with a t-statistic of 2.2 and a risk 
premium of 3.2% per annum. The risk premium reported in the original 
paper was 3.6% per annum.  

Jensen, Kelly, and Pedersen (2022) also provided a replication of the coskew 
variable. They reported an alpha of 1.4% for the U.S. market and 3.4% for 
developed markets excluding the U.S. They found no effect for emerging 
markets. They also presented a test for statistical significance in which the p-
value needs to be less than 0.025. The estimation on the U.S. data provides 
a p-value of 0.05 and on the developed excluding U.S. data of 0.02.  
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Finally, Anghel et al. (2022) provided both a replication and an extension 
that explores alternative measures of coskew. They found that the estimates 
are fairly different from Harvey and Siddique (2000), even though many of 
the qualitative results remain the same. They noted a large discrepancy 
between the Harvey and Siddique sample size of 9,268 and their sample size 
of 14,988. The discrepancy is largely a result of CRSP’s adding all NASDAQ 
stocks to its database in the interim.  

Focusing on the long–short portfolio returns, Anghel et al. (2022) reported 
a replication of the risk premium at 2.6%, which is somewhat lower than the 
original 3.6%. In the recent out-of-sample period, the premium is 1.6%. 

Anghel et al. (2022) also show the performance of alternative measures of 
coskew proposed by Langlois (2020). The goal of the Langlois measure, 
which uses information on firm characteristics, is to reduce the noise in the 
estimate of coskew. Anghel et al. (2022) also provided a modified measure 
that only uses information from past stock returns.  They noted: “We confirm 
the intuition in Harvey and Siddique (2000) that coskewness is priced in the 
cross-section of stocks.” They showed that the alternative measures of 
coskew appear to dominate the original measure from our 2000 paper.  

 

Sensitivity to Research Choices 

We have also reproduced and replicated our paper. Of particular interest is 
the sensitivity of results to different research choices.  

In Table 1, we reproduce the long–short results of Harvey and Siddique 
(2000) and focus on three choices: 1) value or equal-weighted portfolios, 2) 
estimation window for coskew, and 3) maximum number of missing values 
allowed. Each of the results in Table 1 uses 30/70 break points, which is also 
a research choice, but is consistent with Fama and French (1992). Our 2000 
paper reported a premium of 3.6%, which replicates well with a 3.8% 
premium. Remember, the reproduction is using 50% more securities, given 
the additional NASDAC stocks that were added to CRSP. The table shows 
considerable variation—from 2.1% to 3.9%—in the premium. 

In Table 2, we explore the choice of break points over the original sample by 
looking at 20/80, quintiles implemented by McLean and Pontiff (2016), as 
well as 10/90 (deciles). Interestingly, the highest premium occurs in the 
10/90 portfolios. In this set-up, the long portfolio has the top decile of 
negative coskewed stocks. In the equal-weighted implementation, the 
premium is 6.3% and in the value-weighted results is 4.7%. Our original 
choice, 30/70, is among the worst performers.  

Hou, Xue, and Zhang (2020) showed that many factor premia are sensitive 
to the inclusion of small stocks. As such, Table 3 shows the sensitivity of 
results to dropping the smallest 1st, 2nd, and 4th percent of all stocks based on 
market capitalization. Not surprisingly, this exercise has little impact on the 
value-weighted formulation, although we observe some variation in the 
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equal- weighted analysis. The effect is surprising in the context of Hou, Xue, 
and Zhang in that dropping the smaller stocks increases the premium 
associated with skewness. A reasonable interpretation is that the estimate of 
coskew for smaller stocks is much noisier than for large stocks. This 
interpretation is also consistent with the usefulness of alternative measures 
of coskew that are less sensitive to noise (Langlois, 2020, and Anghel et al., 
2022). 

Our out-of-sample analysis focuses on the 1994–2019 period. We present 
results for the full out-of-sample period as well as for two subperiods, 1994–
2007 and 2008–2019. Consistent with other replications, the mean 
premium is smaller in the out-of-sample period, 2.0%, using the measure 
initially reported in our 2000 paper (i.e., the equal-weighted portfolio with 
a limit of 12 missing observations). The first subperiod has a 1.4% premium 
and the second a 2.6% premium.  

Consistent with the earlier reproduction, some of the highest premiums 
reported in Table 4 are from different breakpoints, particularly the 10/90. In 
the full out-of-sample period, the equal-weighted premium is 3.9% and the 
value-weighted is 4.7%. While we observe some variation across the 
subperiods, the premium is always positive. For example, for the value-
weighted construction, the 10/90 breakpoint delivers 5.7% in the first 
subperiod and 3.6% in the second subperiod.  

Table 5 provides some benchmarking for the out-of-sample analysis. The 
original construction of the coskew factor has a 2% return over this period. 
As we previously mentioned, the subperiod performance was consistent with 
1.4% in the first half and 2.6% in the second half. The Fama and French 
(1992) value factor, HML, has a 1.6% premium in our out-of-sample period 
with inconsistent performance in the two subperiods (4.7% and −2.0%). The 
premium on the size factor, SMB, is modest at 0.9%, with consistent 
performance in both subperiods. The largest premium is for momentum, 
which has a 4.8% premium in the full out-of-sample period, but displays very 
inconsistent performance. In the first period, momentum has a 9.7% return 
and in the second period a −0.8% return.  

 

Conclusions 

The economic foundation that skewness plays an important role in asset 
pricing is solid. Investors need to be rewarded for purchasing assets that add 
downside risk to their portfolio. Twenty-five years ago, we proposed an 
empirical asset pricing model that added coskewness as a risk measure. Our 
results presented in Harvey and Siddique (2000) suggested that the risk 
premium was greater than 3% on an annualized basis.  

A number of papers have successfully reproduced our results on the original 
sample. In the out-of-sample period, the premium is estimated to be smaller, 
but is consistent across subperiod and is always positive. In contrast, some 
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other popular empirical asset pricing factors, such as HML and momentum, 
flip signs. SMB has consistent performance, but with an estimated risk 
premium less than 1%.  

We have also documented that research choices have a considerable 
influence on the measurement of the skewness risk premium. For example, 
in our original paper, we chose a long–short portfolio with the top and 
bottom 30% of stocks based on our measured coskewness. The estimated 
risk premium both in sample and out of sample is much larger for measures 
that use the top and bottom quintiles or deciles. Our original paper happened 
to choose the measure that delivered the lowest premium. Nevertheless, the 
premium successfully replicated.  

There is also a fundamental decision of how to measure skewness and 
coskewness. As we point out, it is very challenging to measure higher 
moments such as skewness. Harvey et al. (2010) proposed a Bayesian 
approach to portfolio design that explicitly takes the uncertainty in the skew 
measures into account. Langlois (2020) offered a novel approach that 
reduces the noise in the coskew measure by using nonprice information. 
Anghel et al. (2022) modified the Langlois approach. All of these research 
initiatives are promising. 

Unfortunately, after 25 years and many successful replications, too many 
students of finance are only exposed to the mean-variance frontier. Our 
courses also feature empirical factor models. The importance of skewness 
has been validated over the past decades. We are hopeful that textbooks and 
curricula of the future will deepen the discussion of risk. 

 

  



8 
 

References  

Anghel, S., Caraiani, P., Roşu, P., and Roşu, I. (2022). Asset Pricing with 
Systematic Skewness: Two Decades Later. Critical Finance Review, 
Forthcoming, 1–46. 

Bowley, A. L. (1920). Elements of Statistics. New York: Scribner's. 

Chen, A. Y., and Zimmerman, T. (2021). Open source cross-sectional asset 
pricing. Critical Finance Review, Forthcoming, 1–65. 

Fama, E. F., and French, K. R. (1992). The cross-section of expected stock 
returns. Journal of Finance, 47, 427–465. 

Harvey, C. R. (2017). Presidential address: The scientific outlook in 
financial economics. Journal of Finance, 72, 1399–1440. 

Harvey, C. R., (2020). Replication in financial economics. Critical Finance 
Review 8, 1-9.  

Harvey, C. R., M. Liechty, J. Liechty and P. Muller (2010) Portfolio 
Selection with Higher Moments, Quantitative Finance, 10, 469-
485. 

Harvey, C. R., Liu, Y., and Zhu, H. (2016). … and the cross-section of 
expected returns. Review of Financial Studies.  29(1), 5-68 

Harvey, C., and Siddique, A. (2000). Conditional skewness in asset pricing 
tests. Journal of Finance, 55, 1263-1295. 

Hinkley, D. V. (1975). On power transformations to symmetry. Biometrika, 
62, 101-111. 

Hou, K., Xue, C., and Zhang, L. (2020). Replicating anomalies. Review of 
Financial Studies, 33, 2019-2133.  

Jensen, T. I., Kelly, B. T., and Pedersen, L. H. (2022). Is there a replication 
crisis in finance? Working Paper. NYU Stern School of Business 
Forthcoming. 

Kim, T.-H., and White, H. (2004). On more robust estimation of skewness 
and kurtosis. Finance Research Letters, 1, 56-73. 

Kraus, A., and Litzenberger, R. H. (1976). Skewness Preference and the 
Valuation of Risk Assets. Journal of Finance, 31, 1085-1100. 

Langlois, H. (2020). Measuring skewness premia. Journal of Financial 
Economics, 135, 271-292. 

Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7, 77-91. 

McLean, R. D., and Pontiff, J. (2016). Does academic research destroy stock 
return predictability? Journal of Finance, 71, 5–32. 



9 
 

Rubinstein, M. (1973). The fundamental theorem of parameter preference 
security valuation. Journal of Financial and Quantitative Analysis, 
8, 61-69. 

Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium 
under conditions of risk.  Journal of Finance, 19, 425–442. 

 

 



Table 1: Reproducing Realized Skewness Premium and Robustness
We compute the coskewness risk premium, following Harvey and Siddique (2000)
for all stocks listed on NYSE/Amex and Nasdaq over the period July 1963 to

December 1993. Standardized direct coskewness, β̂SKDi , for each of the stocks is
computed using a fixed window such as the previous 60 months of returns. The
stocks were then ranked based on their coskewness. Three portfolios are formed,
such as the lowest 30 percent with the most negative coskewness, called S−, middle
such as the middle 40 percent, called S0, and top such 30 percent with the most
positive coskewness, called S+. The post-ranking month, such as the 61st month
for a 60 month rolling estimation window, spread between S− and S+ is then used
to proxy for the return on coskewness. In the table below, this spread is computed
over varying Window (36, 48, 60 and 72). Limit Missing indicates how many
months (out of the Window) are allowed to be missing before a stock is not used

in the β̂SKDi calculation. The boldfaced line represents the choices made in Harvey
and Siddique (2000). The results illustrate the considerable variation —from 2.1%
to 3.9% — in the risk premium.

Window Limit Break Cap Mean StdDev
Missing Points Month

Equally weighted – Change in Limit on Missing
60 0 30, 70 12 2.47 5.47
60 12 30, 70 12 3.78 4.76
60 24 30, 70 12 3.72 4.74

Value weighted – Change in Limit on Missing
60 0 30, 70 12 2.18 7.65
60 12 30, 70 12 2.45 7.55
60 24 30, 70 12 2.48 7.56

Equally weighted – Change in Window
36 24 30, 70 12 3.74 4.79
48 24 30, 70 12 3.44 4.80
60 24 30, 70 12 3.72 4.74
72 24 30, 70 12 3.58 4.77

Value weighted – Change in Window
36 24 30, 70 12 3.88 7.61
48 24 30, 70 12 2.19 7.42
60 24 30, 70 12 2.48 7.56
72 24 30, 70 12 2.12 7.77
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Table 2: Reproducing Realized Skewness Premium: Changing
Break Points
We compute the coskewness risk premium, following Harvey and Siddique (2000)
for all stocks listed on NYSE/Amex and Nasdaq over the period July 1963 to

December 1993. Standardized direct coskewness, β̂SKDi , for each of the stocks is
computed using a fixed window such as the previous 60 months of returns. The
stocks were then ranked based on their coskewness. Three portfolios are formed,
such as the lowest 30 percent with the most negative coskewness, called S−, middle
such as the middle 40 percent, called S0, and top such 30 percent with the most
positive coskewness, called S+. The 61st month (i.e. post-ranking) spread between
S− and S+ is then used to proxy for the return on coskewness. In the table below,
this spread is computed over a fixed window of 60 months. Break Points show
what percentiles are used for S− and S+. The results show the significant impact
from Break Points, with the largest premium occurring with a 10/90 break point,
i.e. deciles.

Window Limit Break Cap Mean StdDev
Missing Points Month

Equally weighted – Change in Break Points
60 12 30, 70 12 3.78 4.76
60 24 30,70 12 3.72 4.74
36 24 20,80 12 4.40 5.85
60 12 20,80 12 5.14 5.86
60 24 20,80 12 5.06 5.85
60 24 10,90 12 6.32 7.62

Value weighted – Change in Break Points
60 24 30,70 12 2.48 7.56
36 24 20,80 12 4.67 8.63
60 12 20,80 12 3.43 9.23
60 24 20,80 12 3.37 9.23
60 24 10,90 12 4.66 10.45
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Table 3: Reproducing Realized Skewness Premium: Dropping Small
Firms
We compute the coskewness risk premium, following Harvey and Siddique (2000)
for all stocks listed on NYSE/Amex and Nasdaq over the period July 1963 to

December 1993. Standardized direct coskewness, β̂SKDi , for each of the stocks is
computed using a fixed window such as the previous 60 months of returns. The
stocks were then ranked based on their coskewness. Three portfolios are formed,
such as the lowest 30 percent with the most negative coskewness, called S−, middle
such as the middle 40 percent, called S0, and top such 30 percent with the most
positive coskewness, called S+. The 61st month (i.e. post-ranking) spread between
S− and S+ is then used to proxy for the return on coskewness. In the table below,
this spread is computed over a fixed window of 60 months. We present the impact
of dropping the smallest 1, 2 and 4 percentile of firms by capitalization. There is
not a large impact.

Window Limit Break Percentile Cap Mean StdDev
Missing Points Dropped Month

Equally weighted – Dropping the Lowest Percentiles by Cap
60 24 30,70 1 12 3.87 4.80
60 24 30,70 2 12 3.92 4.77
60 24 30,70 4 12 4.04 4.76
Value weighted – Dropping the Lowest Percentiles by Cap

60 24 30,70 1 12 2.48 7.56
60 24 30,70 2 12 2.48 7.56
60 24 30,70 4 12 2.48 7.56
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Table 4: Realized Skewness Premium: Out of Sample
We compute the coskewness risk premium, following Harvey and Siddique (2000)
for all stocks listed on NYSE/Amex and Nasdaq over the period January 1994 to

December 2019. Standardized direct coskewness, β̂SKDi , for each of the stocks is
computed using a fixed window of previous 60 months of returns. The stocks were
then ranked based on their coskewness. Three portfolios are formed, such as the
lowest 30 percent with the most negative coskewness, called S−, middle such as
the middle 40 percent, called S0, and top such 30 percent with the most positive
coskewness, called S+. The 61st month (i.e. post-ranking) spread between S− and
S+ is then used to proxy for the return on coskewness. Limit Missing indicates
how many months (out of the Window) are allowed to be missing before a stock

is not used in the β̂SKDi calculation, Break Points show what percentiles are used
for S− and S+.

Weighting Limit Break Mean StdDev
Missing Points

1994 January to 2019 December
Equal 0 30, 70 3.14 6.12
Equal 12 30, 70 1.95 6.08
Equal 24 20, 80 2.90 7.35
Equal 24 10, 90 3.92 9.63
Value 0 30, 70 2.40 8.50
Value 12 30, 70 1.95 7.99
Value 24 20, 80 2.98 8.50
Value 24 10, 90 4.71 12.66

1994 January to 2007 December
Equal 0 30, 70 2.72 6.22
Equal 12 30, 70 1.43 6.26
Equal 24 20, 80 2.15 7.62
Equal 24 10, 90 1.22 9.94
Value 0 30, 70 3.66 9.39
Value 12 30, 70 2.91 8.58
Value 24 20, 80 3.01 12.76
Value 24 10, 90 5.70 13.03

2008 January to 2019 December
Equal 0 30, 70 3.64 6.02
Equal 12 30, 70 2.55 5.87
Equal 24 20, 80 3.78 7.05
Equal 24 10, 90 7.07 9.21
Value 0 30, 70 0.93 7.35
Value 12 30, 70 0.83 7.26
Value 24 20, 80 1.49 9.02
Value 24 10, 90 3.55 12.26
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Table 5: Realized Premia on Fama-French factors and Realized
Skewness Premium
We compute the averages on the risk factors compiled by Fama and French over the
period January 1994 January to December 2019. The risk factors are Mkt−Rf ,
HML, SMB, and Momentum. As described on Professor French’s website: SMB
(Small Minus Big) is the average return on three small portfolios minus the average
return on three big portfolios. HML (High Minus Low) is the average return on
the two value portfolios minus the average return on the two growth portfolios.
Momentum is the average return on the two high prior return (2 to 12 month
prior) portfolios minus the average return on the two low prior return portfolios.
We compute the coskewness risk premium, following Harvey and Siddique (2000)
for all stocks listed on NYSE/Amex and Nasdaq over the period January 1994 to

December 2019 . Standardized direct coskewness, β̂SKDi , for each of the stocks
is computed using previous 60 months of returns. The stocks were then ranked
based on their coskewness. Three portfolios are formed, such as the lowest 30
percent with the most negative coskewness, called S−, middle such as the middle
40 percent, called S0, and top such 30 percent with the most positive coskewness,
called S+. The 61st month (i.e. post-ranking) spread between S− and S+ is then
used to proxy for the return on coskewness.

Factor Mean StdDev
January 1994 to December 2019
MKT-RF 8.20 14.86
HML 1.59 10.47
SMB 0.90 11.21
Momentum 4.83 17.06
Skew 1.95 6.08

January 1994 to December 2007
MKT-RF 7.08 14.41
HML 4.70 11.20
SMB 0.87 13.36
Momentum 9.70 17.23
Skew 1.43 6.26

January 2008 to December 2019
MKT-RF 9.52 15.41
HML -2.04 9.49
SMB 0.94 8.06
Momentum -0.84 16.76
Skew 2.55 5.87
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