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Abstract 

This study provides a theoretical basis for the transformation of the probability of informed 

trading (PIN) model to the volume-synchronized PIN (VPIN) setting based on volume buckets. 

Building on Easley et al. (2011, 2012b), who derive the VPIN metric and provide evidence of its 

usefulness, we expand the analytical basis of the model and clarify its derivation. We show 

mathematically that Easley et al.’s VPIN metric becomes unstable for small volume buckets and 

for infrequent informed trades. In contrast, we use a maximum likelihood estimation to capture 

the information in volume time, and as a result our improved VPIN mathematical model 

generates consistent estimates. We also show that the volume time measure helps improve the 

predictability of VPIN for the flow toxicity. 

JEL classification: C52; C13; G14; G12; C51 
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1. Introduction 

This study provides a theoretical basis and presents an effective estimation process for the 

transformation of the probability of informed trading (PIN) model to the volume-synchronized 

PIN (VPIN) setting based on equal-sized volume buckets. Easley et al. (1996, 2002) develop a 

microstructure PIN model, and Easley et al. (2011, 2012b) modify the model to create VPIN, 

which applies to high-frequency markets. VPIN is estimated based on a volume time scale where 

the basic unit is a fixed-sized volume bucket rather than a constant stretch of calendar time. 

Easley et al. (2011, 2012b,c) provide empirical evidence that VPIN is useful in monitoring order 

flow imbalances and conclude that it signals impending market turmoil. Several recent studies 

also explore the VPIN metric and build on its application (Abad and Yague, 2012; Bethel et al., 

2012; Madhavan, 2011; Wei et al., 2013). 

However, Andresen and Bondarenko (2014a) conduct mathematical analyses and find that 

the VPIN metric is imperfect for predicting short-run volatility and the flash crash.1 Andresen 

and Bondarenko (2014b) explore the VPIN metric and conclude that the VPIN metric is not 

theory driven. Given these contradictory findings, we argue, in line with Easley et al. (2011, 

2012b), that the VPIN metric is not derived based on a fully specified model but rather serves as 

a convenient extension of PIN, and therefore a modified procedure of transformation is needed. 

                                                        
1 Easley et al. (2014) respond to Andresen and Bondarenko’s criticism but provide no further analytical evidence. 
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The goal of this study is not to defend the empirical work regarding VPIN but rather to improve 

the VPIN theory base by developing a model that illustrates how to transform the PIN model, 

which is based on calendar time, to the VPIN model, which is based on volume time. 

Specifically, this paper demonstrates that PIN and VPIN are different probability measures 

for informed trading because the volume time, which is the time taken to fill a fixed-sized 

volume bucket, is stochastic. In Easley et al. (2012b), each equal-sized bucket is equivalent to a 

random time period of information arrival for VPIN derivation. However, the simplest theory of 

PIN has information taking place over equal time units, such as a trading day. Namely, PIN is a 

probability measure for a given time unit whereas VPIN is a probability measure for a given 

fixed-sized trading volume. To improve on Easley et al.’s (2012b) method of moment estimation 

(MME) for VPIN, this study proposes incorporating the volume time via maximum likelihood 

estimation (MLE). 

The remainder of this study is organized as follows. Section 2 provides a simple numeric 

illustration for explaining PIN, VPIN and their difference. Section 3 provides a description of our 

derived model for VPIN, which is based on the volume bucket. In Section 4, we derive the 

analytic VPIN metric and show that the VPIN measure is a probability of informed trading in the 

condition of a fixed trading volume. By contrast, the original PIN estimator generates a 

probability estimate with respect to a given time interval. Section 5 provides the estimation of 
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VPIN with volume time via MLE. Section 6 performs a simple empirical test using the trading 

data of SYP, which are the exchange traded funds of S&P 500 stock index. Finally, Section 7 

offers the summary and conclusions. 

2. A Simple Numeric Illustration 

 

[TABLE 1 ABOUT HERE] 

 

In Table 1, we construct a numeric example to demonstrate the difference between PIN and 

VPIN, and the effect of volume time setting on the effectiveness in estimating these measures. In 

this example, we assume that arrival rates of both uninformed buyers and sellers are equal, that 

the news type is known, and that one share is one trade. Accordingly, we obtain approximate 

MLE estimates for PIN and VPIN. Moreover, with no news, we set that buy and sell volumes (VB 

and VS) are equal. Then, Easley et al.’s (2012b) MME, which may generate PIN or VPIN, also 

perfectly identify the emerging event. Furthermore, the trading imbalance can directly measure 

the informed trading. Thus, the MME estimates can compare with the MLE estimates. 

In Panels A to D of this example, the proportion of event periods is the MLE estimate for 

the probability of information occurrence. The estimate for uninformed buyers and sellers’ 

arrival rates is the total sum of all buy volumes from no news as well as bad news periods, and 
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all the sell volumes from no news as well as good news periods, divided by the total sum of 

corresponding times. The informed traders will be the buyers when the event is good news and 

will be the sellers when it is bad news. Therefore, the sum of aggregate buy volumes during good 

news periods and aggregate sell volumes during bad news periods, divided by the total sum of 

corresponding times, and then minus the estimate for uninformed buyers and sellers’ arrival rates, 

is the estimate of informed traders’ arrival rate. Moreover, Easley et al.’s MME is the mean (or 

sum) of imbalanced trading volumes divided by the mean (or sum) of total trading volumes 

based on the fixed-length time periods or on the fixed-sized buckets. 

For instance, in Panel A of Table 1, these MLE estimates based on time bars are as follows: 

the probability of information event is 0.4 = 6/15, the uninformed traders’ arrival rate is 100 = 

(18×100+2×(2×75+150))/(18×1+2×(2×1+1)), and the informed traders’ arrival rate is 200 = 300 

– 100, where 300 = (2×(2×225 +450))/(2×(2×1+1)). Then, by definition, we obtain the PIN MLE 

estimate 0.286 = (0.4×200)/(0.4×200+2×100), which is the ratio of mean informed trading 

volume to mean total volume for a given fixed time length. Moreover, the VPIN estimate is 0.2 = 

0.4×(200/(200+2×100)), which is the probability of information arrival further multiplied by the 

ratio of the informed trading volume to a fixed total trading volume conditioned on the event 

occurrence. Easley et al.’s MME generates the PIN estimate, 0.286 = 80/280 = ((4×|225−75| + 

2×|450−150| + 9×|100−100|)/15) / ((4×|225+75| + 2×|450+150| + 9×|100+100|)/15). 
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Panel A shows that, with the buy and sell volumes measured in a fixed time length, the 

Easley et al.’s MME of 0.286 serves as a measure for PIN, which is the probability with respect 

to a given time bar. Panels B and C show that, based on trading volumes from the same time bars 

in Panel A, the buy and sell volumes are aggregated for the trading days with a fixed three time 

units and for buckets with a fixed volume of 600 shares and a varied time length. Based on 

trading days under the Panel B, the Easley et al.’s MME of 0.286 measures the PIN. Based on 

the buckets in Panel C, Easley et al.’s MME of 0.286 measures VPIN instead of PIN because it is 

equal to the MLE estimate of VPIN, and is the probability under the condition of a fixed volume 

of 600 shares. This shows our argument that the varied time length, which is inconsistent with 

the assumption implied by original PIN, results in different probability measures for informed 

trading derived via Easley et al.’s MME. 

Panels C and D show that the trading imbalance in the short volume time may help improve 

the MLE estimates of PIN and VPIN. Panel D has shorter volume times in both buckets 1 and 3 

than Panel C does. This may mean that the condition shown in Panel D has more informed 

traders in these buckets than that in Panel C does and should generate a greater PIN or VPIN. 

Easley et al.’s MME does not change for either panel, but the MLE estimates of PIN and VPIN 

are greater in Panel D. Namely, the MLE helps improve upon Easley et al.’s VPIN metric, which 

does not incorporate the information of volume time. 
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Finally, the Easley et al.’s MME estimates based on time bars, trading days and buckets are 

not always equal to one another. In this paper, we demonstrate the issue using a special case, in 

which the news types are known and there are equal buy and sell volumes in no news periods. 

3. Modeling VPIN 

To simplify our modeling, we assume that each trade is perfectly signed. Namely, we do not 

need any algorithm to sort trades. As mentioned in Easley et al. (2014), the trade classification 

decision can be made independently from the VPIN metric. 

Let Bi and Si denote the numbers of buyer- and seller-initiated trades (or buys and sells) 

during a given (unit) trading period i. The notation Pois(x; λ) ≡ /e−λλx x! denotes the probability 

density function of Poisson variable x with arrival rate λ. 

In the PIN model (Easley et al., 1996, 2002), the joint probability density function (p.d.f.) of 

Poisson variables Bi and  Si can be specified as  

  f(Bi, Si; θ) = αδf(Bi, Si|bad news; θ) 

  + α (1 − δ)f(Bi, Si|good news; θ) + (1 − α)f(Bi, Si| no news; θ) (1) 

 = αδPois(Bi; εb)Pois(Si; εs + µ) 

 + α (1 − δ)Pois(Bi; εb + µ)Pois(Si; εs) + (1 − α)Pois(Bi; εb)Pois(Si; εs), 

where α is the probability of an information event occurring during the given trading period i; δ 

and (1 − δ) are the conditional probabilities of bad and good news types, respectively; εb (εs) is 
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the arrival rate of uninformed buys (sells); µ is the arrival rate of informed trades; and vector 

θ = (α, δ, µ, εb, εs) represents the structural parameters. 

Replacing buys and sells, Bi and Si, respectively, with the buy and sell volumes, V
B
i  and V

S
i, 

Easley et al. (2011, 2012b) modify the PIN model to apply to high-frequency markets. That is, 

they treat each reported trade as an aggregation of trades of unit size. Accordingly, for example, 

they treat one trade for five shares at a certain price p the same as five trades of one share, each 

at price p. The extension implies that V
B
i  and V

S
i are also Poisson variables and that their joint 

p.d.f. may be specified as  

  f(VB
i , V

S
i ; θ) = αδf(V

B
i , V

S
i |bad news; θ) 

  + α (1 − δ)f(V
B
i , V

S
i |good news; θ) + (1 − α)f(V

B
i , V

S
i |no news; θ) (2) 

 = αδPois(V
B
i ; εb)Pois(V

S
i ; εs + µ) 

 + α (1 − δ)Pois(V
B
i ; εb + α)Pois(V

S
i ; εs) + (1 − α)Pois(V

B
i ; εb)Pois(V

S
i; εs). 

Easley et al. (2011, 2012b) group sequential trades into equal volume buckets of an 

exogenously defined size V. A volume bucket is, therefore, a collection of trades with volume V. 

Let τ = 1, 2, …, n be the index of equal volume buckets. For each volume bucket τ, a 

corresponding random time interval ωτ, with a length that equals volume time tτ, exists. 

Therefore, the volume in the bucket τ is the sum of V
B
i  and V

S
i  in a random time interval ωτ 

such that Σi∈ωτ
(V

B
i  + V

S
i) = V, where V

B
i  and V

S
i may be treated as the buy and sell volumes, 
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respectively, in a (unit) time bar i. For each volume bucket τ, the volumes of buy and sell V
B
τ

=Σi∈ωτ
V

B
i  and V

S
τ=Σi∈ωτ

V
S
i  may be calculated with Vτ = V

B
τ  + V

S
τ = V. Easley et al. (2011, 

2012b) implicitly assume for the VPIN metric that each information event affects a volume 

bucket with the probability α.2 Namely, after an information event occurs, the execution of the 

informed trader’s order may be completed in a volume bucket. This assumption suggests that the 

PIN and VPIN models are similar but not fully equivalent. In contrast to the PIN setting, the 

VPIN setting assumes that informed traders submit their buy or sell orders by volume bucket 

instead of calendar time interval. 

Easley et al. (2012b) derive the VPIN estimator based on the argument of two moment 

conditions, E[|V
B
τ – V

S
τ|] ≈ αµ and E[V

B
τ + V

S
τ] = 2ε + αµ, from the Poisson processes. Using our 

notations, the two moment conditions should instead be expressed as  

 E[|V
B
τ – V

S
τ||tτ; θ] ≈ αµ tτ and  

 E[V
B
τ + V

S
τ|tτ; θ] = (2ε + αµ) tτ,  (3) 

                                                        
2 Easley et al. (2012b, p. 1469) make the following assumption: “We divide the trading day into equal-sized volume 

buckets and treat each volume bucket as equivalent to a period for information arrival.” Following Easley et al. 

(2011, 2012b), we set V as the one-fiftieth of the mean daily volume, and a user may obtain the VPIN metric with 50 

volume buckets on a trading day. If an information event occurs only once each day and does not follow this 

assumption, these 50 buckets will come from the same (conditional) Poisson distribution and VPIN ≈ µ/(2ε + µ) or 

0/(2ε)=0, of which both do not include α. 
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where tτ is a given fixed unit time interval and may be rescaled to 1, and volume V is not equal to 

the sum of V
B
τ and V

S
τ, which is a random variable. However, according to Easley et al. (2011, 

2012b), V
B
τ and V

S
τ do not follow independent Poisson distributions due to the exogenous 

constraint V = V
B
τ + V

S
τ. This issue is not relevant for a calendar time interval (such as one 

trading day) because V
B
τ  and V

S
τ  can take arbitrary realized values. Namely, the Poisson 

processes for trade arrivals are not directly implementable on a volume bucket.3 

After we derive the valid moment conditions, we show that VPIN and PIN measures have 

different definitions. In line with Easley et al.’s (2011, 2012b) estimation procedure, in the 

following discussion we accurately model volume time tτ as randomly determined by an 

exogenously defined size V and show that the VPIN metric is actually calculated based on E[|V
B
τ 

– V
S
τ||V; θ] ≈ V⋅[ ]αµ/(2ε + µ)  and E[V

B
τ + V

S
τ|V; θ] = V, where volume time tτ is integrated out 

in the expectation. 

According to the previous descriptions, the joint p.d.f. of V
B
τ , V

S
τ and tτ given V by 

rewriting the Eq. (2) is  

  f(VB
τ, V

S
τ, tτ|V; θ) = αδf(V

B
τ, V

S
τ, tτ|V, bad news; θ) 

  + α (1 − δ)f(V
B
τ, V

S
τ, tτ|V, good news; θ) + (1 − α)f(V

B
τ, V

S
τ, tτ|V, no news; θ). (4) 

In Eq. (1) or Eq. (2), an information event affects trades in a given trading period, which is 

                                                        
3 We appreciate the anonymous reviewer’s useful comment. 
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regarded as a time bar. In contrast, in Eq. (4), an information event affects the trades in a volume 

bucket, which corresponds to more than one time bar. 

To express Eq. (4) in a closed form, we take f(V
B
τ, V

S
τ, tτ|V, no news; θ) for an illustration. 

First, for given tτ (or, say, ωτ),  

 f(V
B
τ, V

S
τ,| tτ, no news; θ) = Pois(V

B
τ; tτεb)Pois(V

S
τ; tτεs) (5) 

because V
B
τ=Σi∈ωτ

V
B
i , V

S
τ=Σi∈ωτ

V
S
i , V

B
i  and V

S
i  are Poisson variables (as defined in the PIN 

model). Let V
B
τ = V

B
τ and V = V

B
τ + V

S
τ; we derive the following joint p.d.f. of V

B
τ and V via 

the probability theory (see Hogg and Craig, 1995, pp. 165–166): 

 f(V
B
τ, V|tτ, no news; θ) = f(V

B
τ|V, tτ, no news; θ) f(V|tτ, no news; θ) 

 = B(V
B
τ; V, tτεb

tτεb + tτεs
)Pois(V; tτεb + tτεs) 

 = B(V
B
τ; V, εb

εb + εs
)Pois(V; tτεb + tτεs), (6) 

where B(x; m, p) ≡ m!
x!(m-x)!

 px(1-p)m-x with x = 1, 2, …, m is the p.d.f. of the binomial 

distribution. Furthermore, because of V = V
B
τ + V

S
τ,  

 f(V
B
τ, V

S
τ|tτ, V, no news; θ) 

 = f(V
B
τ|V, tτ, no news; θ) = f(V

S
τ|V, tτ, no news; θ) 

 = B(V
B
τ; V, εb

εb + εs
) = B(V

S
τ; V, εs

εb + εs
). (7) 

Second, because f(V|tτ, no news; θ) is equal to Pois(V; tτεb + tτεs), the time tτ needed to reach 

exactly V cumulative trading volume follows the distribution: 
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 f(tτ|V, no news; θ) = Gamma(tτ; V, εb + εs), (8) 

where Gamma(x; k, λ) ≡ λkxk-1e−λx/Γ(k) is the p.d.f. of the Gamma distribution with x > 0 and 

Γ(k) ≡ ∫
∞

0
yk-1e-ydy. The p.d.f. Gamma(x; k, λ) is typically adopted to model the wait time until the 

kth event occurrence for a Poisson process with arrival rate λ (for details, see Hogg and Craig, 

1995, pp. 131–133). 

According to Eq. (7) and Eq. (8), the joint p.d.f. of V
B
τ, V

S
τ and tτ given V with respect to no 

news arrival may be further expressed as  

 f(V
B
τ, V

S
τ, tτ|V, no news; θ)  

 = f(V
B
τ, V

S
τ,|tτ, V, no news; θ) f(tτ|V, no news; θ)  (9) 

 = B(V
B
τ; V, εb

εb + εs
)⋅Gamma(tτ; V, εb + εs) 

 = B(V
S
τ; V, εs

εb + εs
)⋅Gamma(tτ; V, εb + εs). 

Furthermore, the joint p.d.f. of V
S
τ, V

B
τ, and tτ given V is  

  f(VB
τ, V

S
τ, tτ|V; θ)  

 = αδ B(V
B
τ; V, εb

 εb + εs + µ
)⋅Gamma(tτ; V, εb + εs + µ) 

  + α (1 − δ) B(V
B
τ; V, εb + µ

εb + εs + µ
)⋅Gamma(tτ; V, εb + εs + µ) 

 + (1 − α)B(V
B
τ; V, εb

εb + εs
)⋅Gamma(tτ; V, εb + εs) (10) 

 = αδ B(V
S
τ; V, εs + µ

εb + εs + µ
)⋅Gamma(tτ; V, εb + εs + µ) 

  + α (1 − δ) B(V
S
τ; V, εs

εb + εs + µ
)⋅Gamma(tτ; V, εb + εs + µ) 
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 + (1 − α)B(V
S
τ; V, εs

εb + εs
)⋅Gamma(tτ; V, εb + εs). 

4. Deriving the VPIN Metric 

The estimate in Eq. (10) is more efficient because the complete information set with 

variables V
B
τ, V

S
τ, and tτ, is adopted. However, if we integrate out the volume time tτ, we can 

derive f(V
B
τ, V

S
τ|V; θ) as  

 f(V
B
τ, V

S
τ|V; θ) = ∫

∞

0
f(V

B
τ,V

S
τ, tτ|V; θ)dtτ 

 = αδ B(V
B
τ; V, εb

εb + εs + µ
) 

  + α (1 − δ) B(V
B
τ; V, εb + µ

εb + εs + µ
) + (1 − α)B(V

B
τ; V, εb

εb + εs
) (11) 

 = αδ B(V
S
τ; V, εs + µ

εb + εs + µ
) 

  + α (1 − δ) B(V
S
τ; V, εs

εb + εs + µ
) + (1 − α)B(V

S
τ; V, εs

εb + εs
). 

VPIN can be estimated using only V
B
τ, and V

S
τ with Eq. (11), but the estimates are less efficient. 

That is, the VPIN estimates with Eq. (11) have greater standard errors than those of Eq. (10) 

because Eq. (11) does not include the volume time variable tτ. 

Moreover, if x follows the binomial distribution, of which the p.d.f. is B(x; m, p) with x = 0, 

1, 2, …, m, we can derive the following approximation using Jensen's inequality for a large m 

and a p diverging from 0.5 (see Figure 1):4 

                                                        
4 With Jensen's inequality, E[|m − 2x|]/m > |E[m − 2x]|/m = |2p − 1| and E[|m − 2x|]/m = E{[( m − 2x)2]1/2}/ m < 
{E[(m − 2x)2]} 1/2/m= {[(2p − 1) 2 + 4p(1 − p)/m]} 1/2 ≈ |2p − 1| for a large m. Therefore, E[|m – 2x|] ≈ m|2p – 1| as m 
becomes large. 
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 E[|m – 2x|] ≈ m|2p – 1|. (12) 

 

[FIGURE 1 ABOUT HERE] 

 

Then, with Eq. (11) and Eq. (12), we derive the following result: 

 E[|V
B
τ – V

S
τ||V; θ] ≈ αδV

|εb – (εs + µ)|
εb + εs + µ

 + α(1 − δ)V|(εb + µ) – εs|
εb + εs + µ

 + (1 − α)V|εb – εs|
εb + εs

. (13) 

Following Easley et al. (2012b), we set εb = εs = ε and rewrite Eq. (13) as  

 E[|V
B
τ – V

S
τ||V; θ] ≈ αδ⋅V⋅ µ

2ε + µ
 + α (1 − δ) V⋅ µ

2ε + µ
 = V⋅ αµ

2ε + µ
. (14) 

Therefore, we obtain the estimator of Easley et al. (2012b) for VPIN as 

 EVPIN  ≡ 
Σ n

τ=1| V
B
τ – V

S
τ|/n

V
 = 1

1

/

/

n B S

n

V V n

V n

τ ττ

ττ

=

=

−∑
∑

=
B SV V

V

τ τ

τ

−
 ≈ αµ

2ε + µ
, (15) 

which does not approximately measure αµ/(2ε + αµ), the expectation of Easley et al. (2012b). 

Hereafter, VPIN is defined as αµ/(εb + εs + µ). That is, VPIN ≡ αµ/(εb + εs + µ). Based on 

this definition, the VPIN is a measure from the Bayes’ theorem for the probability of informed 

trading given a fixed-sized trading volume. By contrast, the original PIN ≡ αµ/(εb + εs + αµ) 

measures the probability of the informed trading for a given fixed time interval. 

That is, VPIN (PIN) is an expectation conditioned (not conditioned) on the volume bucket. 

Specifically, VPIN measures the percentage of informed trading for a given fixed number of 
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transactions, whereas PIN measures the probability of informed trading over a given tiny time 

interval, during which only a single transaction occurs. VPIN may be explained intuitively as 

follows. In buckets in which no event occurs, the arrival rate of trades is εb + εs, and the relative 

arrival rate of informed to total trades is zero, as no informed trades occur. In buckets during 

which an event occurs, the arrival rate is εb + εs + µ. Informed trades, if they exist, arrive at rate 

µ. Therefore, the relative arrival rate of informed to total trades in buckets in which an event 

occurs is µ/(εb + εs + µ). Information events occur with probability α, so that the expected 

relative arrival rate of informed to total trades is α⋅µ/(εb + εs + µ). 

Analogously, Easley et al.’s VPIN metric (EVPIN) intuitively measures VPIN rather than 

PIN for εb = εs = ε. Suppose that the volume of trading imbalance measures informed trading. 

When εb = εs = ε, a trading imbalance may be triggered by a news event such as the 

announcement of a firm successor. Thus, a large (small) trading imbalance suggests a news 

(no-new) regime with a high (low) |V
B
τ – V

S
τ|/V ≈  µ/(2ε + µ) (≈ 0). Easley et al.’s VPIN metric, 

which may be treated as the mean ratio of the imbalanced volume to the total trading volume, is 

α⋅µ/(2ε + µ), that is, the probability of the event times the probability of informed trading within 

a news regime.  

Adopting a Monte Carlo simulation using Eq. (11) with fixed V = 500 and n = 50 (buckets), 
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we verify our procedure.5 We take α from {0, 0.1, 0.2, …, 1} and µ from {0, 50, 100, …, 500} 

and then set εb = εs = (V − αµ)/2. For each node of (α, µ), we generate 1,000 samples with size n 

= 50 and calculate the EVPIN and the mean measurement error. Figure 2 plots the results. Panel 

A (Panel B) shows mean error in measuring the actual VPIN (PIN) value using EVPIN, defined 

as EVPIN − VPIN (EVPIN − PIN) from 1,000 Monte Carlo simulations. Panel A shows a more 

stable mean measurement error than that in Panel B. These results suggest that EVPIN captures 

the VPIN value instead of the PIN value. 

 

[FIGURE 2 ABOUT HERE] 

 

Andersen and Bondarenko (2014a) provide a more precise expression and approximation of 

E[|V
B
τ  – V

S
τ ||V; θ] when the trade direction is randomly determined. They express the 

approximation under εs = εb = ε and µ = 0 (or α = 0) as6 

                                                        

5 According to the pseudo code in the appendix of Easley et al. (2012b), the buy and sell volumes (V
B

τ, V
S

τ) 

generated by their Monte Carlo simulation do not satisfy the condition V
B

τ + V
S

τ = V. Therefore, their simulation is 

inconsistent with the estimation procedure of VPIN. 

6 Andersen and Bondarenko (2014a) derive the approximation under the assumption that the trade classification 

scheme generates a purely random buy-sell indicator with probability 1/2. However, if the trade classification 

procedure works well, it will generate the buy–sell indicator with the probability determined by the arrival rates of 

buy and sell orders. Therefore, the probability 1/2 implies that εs = εb = ε and µ = 0 (or that εs = εb = ε and α = 0). 
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 E[|V
B
τ – V

S
τ||V; θ=(α, δ, 0, ε, ε)] = 

����!
����!�! ≈ � �

π	, (16) 

where 
 is an integer subject to V = 2
 or V = 2
 + 1. Eq. (16) implies that EVPIN may be 

inappropriate for small volume buckets and infrequent informed trades because Eq. (15) 

generates a greater measurement error under these conditions.7 Figure 1 supports this intuition. 

Furthermore, given Eq. (11), EVPIN ignores the information provided by the volume time 

variable tτ, and failing to incorporate tτ leads to inefficiency in estimating VPIN. Accordingly, we 

propose an MLE procedure for the VPIN metric, which we discuss in the next section. 

 

5. Estimating VPIN with Volume Time via MLE 

Based on Eq. (10), Eq. (11), and Eq. (15), EVPIN appears to ignore information regarding 

volume time tτ. That is, in practice, EVPIN fails to meet the expectation of Easley et al. (2012b). 

To solve this problem, we follow the original PIN estimation and incorporate the volume time 

variable into the VPIN estimation via MLE. 

                                                                                                                                                                                   

Moreover, without the trade classification, we may simply treat that as if only a trade of one share occurs in a tiny 

time bar, and thus V is the number of time bars, Q, as defined in Andersen and Bondarenko (2014a). 

7 In our opinion, Andersen and Bondarenko’s (2014a, pp. 13–14) Findings 2 and 3 are the results of the worse 

performance of Easley et al.’s (2012b) VPIN metric under εs = εb = ε and µ = 0. A large bucket contains a large 

number of time bars. Then, Easley et al.’s VPIN metric generates a small estimate of imbalance orders and a VPIN 

estimate of approximately zero due to µ = 0 and the law of large numbers. 
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With the assumption that the volume buckets τ = 1, 2, …, n are independent of one another, 

the (log-)likelihood LI(θ|D) of observing a series of (V
B
τ, V

S
τ, tτ) with V

B
τ + V

S
τ = V over the n 

volume buckets is the sum of the log of p.d.f.  LI(θ|V
B
τ, V

S
τ, tτ) ≡  log(f(V

B
τ, V

S
τ, tτ| V; θ)):8 

 LI(θ|D) ≡  Σ 
τ=1

n

LI( )θ| V
B
τ, V

S
τ, tτ  = Σ 

τ=1

n

log( )f(V
B
τ, V

S
τ, tτ| V; θ) , (17) 

where D ≡ { }( )V
B
τ, V

S
τ, tτ τ=1…n represents the buy and sell volumes and the volume times for 

the volume buckets τ = 1, 2, …, n. V
B
τ and V

S
τ may be determined by the signed trading data or 

the trade classification algorithms (see Easley et al., 2012a). With an appropriate numerical 

method, θI ≡ (αI, δI, µI, εbI, εsI) is the consistent estimate of θ by MLE using Eq. (17). We 

denote the estimates from (17) by the subscript I. Then, the improved PIN estimate, given θI, is  

 IPIN = αIµI

 εbI + εsI + αIµI
, (18) 

and the improved VPIN estimate is  

 IVPIN = αIµI

 εbI + εsI + µI
. (19) 

In contrast, under εb ≠ εs, an investor cannot adopt the observed imbalance order flow directly to 

estimate VPIN because she cannot exclude the possibility that the imbalance results from 

                                                        

8 The LI(θ|V
B

τ , V
S

τ, tτ) may be simplified for the stable numerical computing stability via a similar means adopted by 

Lin and Ke (2011). The reformulated LI(θ|V
B

τ , V
S

τ, tτ) is log(exp(eτ,1−eτ,max) + exp(eτ,2−eτ,max) + exp(eτ,3−eτ,max)), where 

eτ,1 = log(αδ) + V
B

τlog(εb) + V
S

τlog(εs+µ) −  tτ(εb+εs+µ), eτ,2 = log(α(1-δ)) + V
B

τlog(εb+µ) + V
S

τlog(εs) −  tτ(εb+εs+µ), 

eτ,3 = log(1-α) + V
B

τlog(εb) + V
S

τlog(εs) −  tτ(εb+εs), and eτ,max = max(eτ,1, eτ,2, eτ,3). 
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liquidity trading during a no-news period. 

Unlike VPIN, the PIN metric measures the probability of informed trading within a fixed 

time interval. The number of trades occurring within each fixed time interval is unknown. PIN 

identifies the number of informed trades among the trades that occur during each fixed time 

interval. The VPIN metric, in contrast, measures the probability of informed trading for a given 

trading volume. Therefore, VPIN is the ratio of informed trades for a given fixed number of 

trades. The time needed to accumulate the given number of trades is a priori unknown. Namely, 

PIN and VPIN measure the probabilities based on different data constructions from the same raw 

data set. 

Adopting a simulation using Eq. (10) with a fixed small V = 50 and n = 50 (buckets), we 

verify the performance for small volume buckets. We take α from {0, 0.1, 0.2, …, 1} and µ from 

{0, 5, 10, …, 50}, and set εb = εs = (V − αµ)/2. For each node of (α, µ), we generate 50 samples 

with n = 50 and calculate IVPIN and EVPIN and their mean measurement errors. Figure 3 plots 

the results. Panel A (Panel B) presents mean error of estimating the actual VPIN value using 

IVPIN (EVPIN) defined as IVPIN − VPIN (EVPIN −VPIN) from 50 simulations (for each 

node).9 Panel A shows a more stable mean measurement error than that in Panel B. These results 

                                                        
9 As we increase the number of simulations that we conduct, the plot becomes smoother; however, the process also 

becomes more time consuming. Therefore, we perform 50 simulations for each node. 
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suggest that IVPIN is more suitable for small volume buckets than EVPIN. 

Figure 3 also implies the significant marginal predicting power of volume time in 

estimating VPIN. If µ is small, volume time is likely to be large according to Eq. (10). Therefore, 

when volume time is large, µ may be small, and thus the difference between IVPIN and EVPIN 

may become large. However, when µ is large, the difference between IVPIN and EVPIN is small 

regardless of volume time. Namely, the marginal effect of volume time becomes more 

pronounced as µ decreases. Thus, volume time may be more beneficial to the identification of 

informed trading for less frequently traded stocks. 

 

[FIGURE 3 ABOUT HERE] 

 

6. Empirical Tests 

Using the trading data of SYP, the ETF of S&P 500 stock index, from the Trade and Quote 

(TAQ) database, we calculate EVPIN and estimate VPIN via MLE both with and without volume 

time tτ on May 6, 2010. We use the one-fiftieth of the mean daily trading volume in 2010 to set 

the bucket size, which is approximately 3,694,243.315 shares. We use the bulk classification 

algorithm (Easley et al., 2012a) with a one-minute time bar to calculate the volumes of buy and 

sell, V
B
τ and V

S
τ, respectively. For a time bar, if the cumulative volume exceeds V, we assume 
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that the trades are uniformly distributed and then calculate V
B
τ, V

S
τ. and tτ proportionally. 

For each rolling window of 50 buckets, we calculate both EVPIN and IVPIN. To improve 

the computational efficiency of IVPIN, we set the solution of the previous rolling window as the 

initial value of the subsequent one. If the previous solution fails to optimize the MLE problem, 

we generate another 25 initial values and rerun the optimization. We obtain IVPIN using the 

log-likelihood function Eq. (17), which is based on Eq. (10) with volume times. We also 

calculate VPIN via MLE based on Eq. (11), which does not include volume times, with the 

constraint of εs + εb = 1 and the following log-likelihood function: 

 LM(θ|D’ ) ≡ Σ 
τ=1

n

L( )θ| V
B
τ, V

S
τ  = Σ 

τ=1

n

log( )f(V
B
τ, V

S
τ| V; θ) , (20) 

where D’  ≡ { }( )V
B
τ, V

S
τ τ=1…n. We denote the estimates from Eq. (20) by the subscript M. 

Moreover, the VPIN (PIN) estimate from Eq. (20) is MVPIN (MPIN), which does not 

incorporate any volume time information. The MVPIN is the MLE version of EVPIN. 

 

[FIGURE 4 ABOUT HERE] 

 

Figures 4A and 4B show the price of SYP and EVPIN and volume time, respectively. The 

price drops substantially during the flash crash between 14:30 and 14:48. EVPIN keeps 

increasing before, during, and after the flash crash. The phenomenon is consistent with the 



22 
 

observation of Andersen and Bondarenko (2013a) that EVPIN does not peak during the crash. 

On the other hand, the volume time appears to decrease before the crash, reach the bottom during 

the crash, and then increase after the crash. This information is useful for estimating VPIN. 

 

[FIGURE 5 ABOUT HERE] 

 

Figure 5 shows the estimates from MLE with and without volume time tτ. After the crash, 

these figures show different patterns. In Panel B, the MVPIN is closer to EVPIN than MPIN. 

This result is consistent with that of our simulation test in Figure 2. This difference is from the 

non-extreme αM (Panel D) 10 and the increasing µM/εM (Panel H), where εM = εbM + εsM = 1. 

Moreover, the three estimates, EVPIN, MVPIN, and MPIN, keep increasing after the crash. In 

contrast, Panel A shows that IPIN (IVPIN) moves within a narrow (a somewhat tighter) band and 

declines slightly. Therefore, Panels A and B show the incremental effect of incorporating volume 

time, which improves the reasonability of VPIN estimates after the crash. 

After the crash the MLE generates increasing µM/εM (Figure 5, Panel H). In contrast, µI/εI 

decreases (Panel G), where εI = εbI + εsI. Along with increasing αI (Panel C), these results create 

a flatter pattern in Panel A than in Panel B after the crash. Namely, after the crash, uninformed 

                                                        
10 When α =1 or 0, VPIN = PIN. 
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traders keep selling their shares and thus add to the order flow imbalance. Without any 

information regarding tτ, the market maker may perceive that the extent of informed trading 

increases. However, with an increasing tτ, the market maker can recognize that sell orders are in 

fact submitted by uninformed traders. 

Panel A of Figure 5 shows that IVPIN responds earlier than EVPIN. Specifically, IVPIN 

(EVPIN) starts to rise at approximately 13:30 (14:00).11 The difference between IVPIN and 

EVPIN appears to be based on whether information regarding volume time is used in the 

estimation. Panel A shows that before the crash, when volume time is large, the difference is 

large. In contrast, during the crash period, when volume time is small, the difference is small. 

Moreover, αI and δI differ significantly from αM and δM.12 

In summary, incorporating volume time variable (tτ) helps improve the predictability of 

VPIN for the flow toxicity. Furthermore, the estimates of VPIN parameter sets generated by the 

estimation procedure that includes tτ differ significantly from the estimates generated by the 

procedure that excludes tτ . 

7. Conclusion 

                                                        
11 The cumulative probability of IVPIN from the empirical cumulative distribution appears to start rising at 
approximately 13:30, and the one of EVPIN begins to rise at approximately 14:00. 
12 Variables needed to explain their differences include (i) the extent of market efficiency and (ii) whether the 
informed traders divide the trade into a large number of smaller orders. Specifically, if the market is efficient and the 
informed trader chooses not to divide her trades, we expect a zigzag pattern of the αI and δI. In contrast, if the 
market is inefficient and the informed trader divides her trades into many orders, we expect a smooth pattern for αI 
and δI. 
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We model the VPIN and the derived VPIN metric from the PIN model, demonstrating that 

VPIN and PIN metrics are different measures. VPIN measures the percentage of informed 

trading for a given fixed number of transactions, whereas PIN measures the probability of the 

informed trading over a given tiny time interval, during which only a single transaction occurs. 

Building on Easley et al. (2011, 2012b), who derive the VPIN metric and provide evidence of its 

usefulness, we then expand theoretical basis of the model and clarify its derivation. 

The logical inconsistency between Easley et al.’s VPIN and PIN metrics primarily results 

from determining the bucket by fixed-sized trading volume. If the bucket is determined by 

certain conditions, such as price duration as in Engle and Russell (1997, 1998), a revised Easley 

et al.’s VPIN metric (EVPIN) may serve as an estimator of PIN, but the other revised VPIN 

metrics may not.13 In contrast, our VPIN estimator (IVPIN) may be viewed as a Bayesian 

estimator of VPIN given V. 

Our proposed generalized VPIN estimation measure is broadly applicable. It extends the 

usefulness of the original VPIN metric for small volume bucket and infrequent informed trading 

conditions. Specifically, small bucket volume may result in overestimating order imbalance and 

thus a large VPIN estimate even when no informed trading occurs.14  Thus, market 

                                                        

13 A revised EVPIN, /( )Σ n

τ=1 /| |V
B

τ –V
S

τ tτ ( )Σ n

τ=1 /Vτ tτ , may serve as the estimator of PIN (≡ αµ/(εb + εs + αµ)), but 

the other revised EVPIN, Σ n

τ=1 /| |V
B

τ  –V
S

τ Vτ, may still be the estimator of VPIN (≡ αµ/(εb + εs + µ)). 
14 This result is consistent with Findings 2 and 3 of Andersen and Bondarenko (2014a, pp. 13–14). 
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microstructure studies that apply Easley et al.’s VPIN metric need to establish a clear criterion 

for a high-frequency market to avoid including in their samples securities with infrequent trades. 

From a practical perspective, even in a high-frequency market, Easley et al.’s VPIN metric 

may mislead market makers. For example, an imbalance may exist when an overwhelming 

number of liquidity trades accompanies fairly few (or no) informed trades. Also, market makers 

may base their bid and ask quotes on a small volume bucket in an attempt to reduce or cover 

inventory costs or to shorten the reaction time. The VPIN metric may be overstated in these 

situations and lead to a wide bid–ask spread, thereby jeopardizing operational efficiency in the 

market. 

Despite the simplicity in calculating VPIN, Easley et al.’s (2012b) estimation procedure 

ignores volume time information (tτ), which may be crucial. Accordingly, we provide the MLE 

procedure for the VPIN and PIN with volume time, which remains valid in an infrequent market. 

We also show that volume time helps to improve the predictability of VPIN for flow toxicity. 

The MLE of VPIN may be useful for assets pricing studies that choose to replace PIN with VPIN. 

Both PIN (≡ αµ/(εb + εs + αµ)) and VPIN (≡ αµ/(εb + εs + µ)) can be calculated based on buckets 

via MLE: Which metric is empirically advantageous is another issue. Furthermore, MLE can be 

applied with various bucket sizes. Determining the right bucket size is not a trivial matter, and 

one-fiftieth of mean daily volume, as reported in prior studies, serves merely as one alternative. 
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We incorporate volume time in a microstructure model based on the PIN setting of Easley et 

al. (1996; 2002). With this model, market makers of thinly traded stocks may update their bid 

and ask quotes with long rolling windows to infer the degree of information asymmetry using 

cumulative trading volume. With this proposed procedure for modeling VPIN, extended PIN 

models can potentially incorporate the volume bucket variable to estimate information 

parameters (e.g., Duarte and Young, 2009.) 
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 Panel A  Panel B 

Figure 1: Panel A depicts the function f(m, p) = E[|m – 2x|], where x follows the binomial 

distribution B(x; m, p). Panel B depicts the function f(m, p) = m|2p – 1|. 

Interpretation:  This figure shows that E[|m – 2x|] ≈ m|2p – 1| when x follows the binomial distribution, of which 

the p.d.f. is B(x; m, p) with x = 0, 1, 2, …, m. Moreover, when m is small or p is approaching 0.5, the approximation 

is inaccurate. 
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 Panel A  Panel B 

Figure 2: Panel A shows the mean error in measuring the actual VPIN value using EVPIN. In 

contrast, Panel B presents the mean error in measuring the actual PIN value using EVPIN. Both 

panels result from 1,000 Monte Carlo simulations with V=500 and n = 50. 

Interpretation:  This figure shows that EVPIN is the estimator of VPIN ≡ αµ/(εb + εs + µ) rather than PIN 

≡ αµ/(εb + εs + αµ) when the simulation itself fits the assumption of fixed-sized volume bucket. 
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 Panel A  Panel B 

Figure 3: Panel A shows the mean error in measuring the actual VPIN value using IVPIN. In 

contrast, Panel B presents the mean error in measuring the actual VPIN value using EVPIN. 

Both panels result from 50 Monte Carlo simulations with V=50 and n = 50. 

Interpretation:  This figure suggests that IVPIN is more suitable for small volume buckets than EVPIN. In addition, 

it implies the significant marginal predicting power of volume time in estimating VPIN because IVPIN incorporates 

the information of volume time. 
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  Panel A: ETF Price and EVPIN Panel B: Volume time 

Figure 4: Panel A shows the (ending) stock price of SPY and EVPIN at the end of each bucket. 

Panel B shows the volume time at the end of each bucket. 

Interpretation:  This figure shows that EVPIN keeps increasing before, during, and after the flash crash. Namely, 

EVPIN does not peak during the crash. On the other hand, the volume time appears to decrease before the crash, 

reach the bottom during the crash, and then increase after the crash. This information is useful for estimating VPIN. 
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  Panel A: IVPIN  Panel B: MVPIN 

   
  Panel C: αI  Panel D: αM 

   
  Panel E: δI  Panel F: δM 

   
  Panel G: µI/εI  Panel H: µM/εM  
Figure 5: Panels A, C, E and G show the estimates from Eq. (17) with tτ. Panels B, D, F and H 

show the estimates from Eq. (20) without tτ. For MLE of Eq. (20), we set the constraint ε = εb + 

εs = 1 to obtain the unique solution. For each panel, between the two vertical lines we depict the 

flash crash between 14:30 and 14:48. We set the ending time to be 14:48 because at which there 

is a lowest bucket end price. 
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Interpretation:  Incorporating volume time variable (tτ) helps improve the predictability of VPIN for the flow 

toxicity. Specifically, after the crash, the estimates of VPIN parameter sets generated by the estimation procedure 

that includes tτ differ significantly from the estimates generated by the procedure that excludes tτ .   
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Panel A: Estimates based on time bars with one time unit. 

News Type Good News Bad News No News MME MLE( αi = 0.4) 

Time Bar i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 B S
i iV V−  80 µi 200 

Buy vol. B
iV  225 225 450 75 75 150 100 100 100 100 100 100100 100100 ( )B S

i iV V+ 280 εi 100 
Sell vol. S

iV  75 75 150 225 225 450 100 100 100 100 100 100 100 100100 PINi 0.286 PINi 0.286 

Time Unit 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 VPINi - VPINi 0.2 

Panel B: Estimates based on trading days with three time units. 

News Type Good News Bad News No News MME MLE( αt = 0.4) 

Day t 1 2 3 4 5 B S
t tV V−  240 µt 200 

Buy vol. B
tV  900 300 300 300 300 ( )B S

t tV V+ 840 εt 100 
Sell vol. S

tV  300 900 300 300 300 PINt 0.286 PINt 0.286 

Trading Time 3 3 3 3 3 VPINt - VPINt 0.2 

Panel C: Estimates based on buckets with fixed trading volume of 600 shares. 

News Type Good News Bad News No News MME MLE( ατ = 0.571) 

Bucket τ 1 2 3 4 5 6 7 B SV Vτ τ−  171.4 µτ 200 
Buy vol. BVτ  450 450 150 150 300 300 300 ( )B SV Vτ τ+ 600 ετ 100 
Sell vol. SVτ  150 150 450 450 300 300 300 PINτ - PINτ 0.364 

Volume Time 2 1 2 1 3 3 3 VPINτ 0.286 VPINτ 0.286 

Panel D: Estimates based on buckets with fixed trading volume of 600 shares and short volume time 

News Type Good News Bad News No News MME  MLE( ατ = 0.571) 

Bucket τ 1 2 3 4 5 6 7 B SV Vτ τ−  171.4 µτ 340.90
Buy vol. BVτ  450 450 150 150 300 300 300 ( )B SV Vτ τ+ 600 ετ 109.09
Sell vol. SVτ  150 150 450 450 300 300 300 PINτ - PINτ 0.472 

Volume Time 1 1 1 1 3 3 3 VPINτ 0.286 VPINτ 0.348 

Table 1: A simple numeric illustration for estimating PIN and VPIN. 

Assuming equal arrival rates for unformed buyers and sellers (εb = εs = ε) and that the news type 

is known, we can obtain approximate MLE estimates for the probability of information event 

occurrence α, the informed traders’ arrival rate µ and the uninformed traders’ arrival rate ε. For 

instance, in Panel C, these MLE estimates are derived as follows: ατ = 4/7 ≈ 0.571, ετ = 

(6×300+2×(150+150))/(6×1+2×(2+1)) = 100, ετ + µτ = (2×(450+450))/(2×(2+1)) = 300, and µτ = 

300 – 100 = 200. Then, PIN MLE estimate is 0.364 = (ατµτ)/(2ετ + ατµτ) and VPIN estimate is 

0.286 = ατ×(µτ/(2ετ + µτ)). Moreover, Easley et al.’s (2012b) MME generates a VPIN estimate, 

0.286 = ( )B S B SV V V Vτ τ τ τ− + = ((4×|450−150|+3×|300−300|)/7)/((4×|450+150|+3×|300+300|)/7) = 

171.429/600, based on fixed-sized buckets. 

Interpretation:  Panels A and B show that, when the buy and sell volumes are measured in a fixed time length, the 

Easley et al.’s MME serves to measure the PIN. Panels B and C show that, based on buckets, the Easley et al.’s 

MME measures the VPIN but not the PIN. Panels C and D show that Easley et al.’s VPIN metric (MME) does not 

incorporate the information of volume time. 


