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Abstract

This study provides a theoretical basis for thedfarmation of the probability of informed
trading (PIN) model to the volume-synchronized RANPIN) setting based on volume buckets.
Building on Easley et al. (2011, 2012b), who detive VPIN metric and provide evidence of its
usefulness, we expand the analytical basis of tbdemand clarify its derivation. We show
mathematically that Easley et al.’s VPIN metric dmmes unstable for small volume buckets and
for infrequent informed trades. In contrast, we asmaximum likelihood estimation to capture
the information in volume time, and as a result auproved VPIN mathematical model
generates consistent estimates. We also showhbatalume time measure helps improve the

predictability of VPIN for the flow toxicity.

JEL classification: C52; C13; G14; G12; C51
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1. Introduction

This study provides a theoretical basis and presamteffective estimation process for the
transformation of the probability of informed tradi (PIN) model to the volume-synchronized
PIN (VPIN) setting based on equal-sized volume btekEasley et al. (1996, 2002) develop a
microstructure PIN model, and Easley et al. (2@12b) modify the model to create VPIN,
which applies to high-frequency markets. VPIN ismeated based on a volume time scale where
the basic unit is a fixed-sized volume bucket ratifian a constant stretch of calendar time.
Easley et al. (2011, 2012b,c) provide empiricatiernce that VPIN is useful in monitoring order
flow imbalances and conclude that it signals impegdnarket turmoil. Several recent studies
also explore the VPIN metric and build on its apalion (Abad and Yague, 2012; Bethel et al.,
2012; Madhavan, 2011; Wei et al., 2013).

However, Andresen and Bondarenko (2014a) conduttemnaatical analyses and find that
the VPIN metric is imperfect for predicting shoutrvolatility and the flash crashAndresen
and Bondarenko (2014b) explore the VPIN metric aodclude that the VPIN metric is not
theory driven. Given these contradictory finding& argue, in line with Easley et al. (2011,
2012b), that the VPIN metric is not derived baseddully specified model but rather serves as

a convenient extension of PIN, and therefore a fremtiprocedure of transformation is needed.

! Easley et al. (2014) respond to Andresen and Ben#ta’s criticism but provide no further analytiealidence.
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The goal of this study is not to defend the empingork regarding VPIN but rather to improve

the VPIN theory base by developing a model thasthates how to transform the PIN model,

which is based on calendar time, to the VPIN moahich is based on volume time.

Specifically, this paper demonstrates that PIN ¥RtN are different probability measures

for informed trading becausthe volume time, which is the time taken to fillfized-sized

volume bucket, is stochastic. In Easley et al. Z),Lleach equal-sized bucket is equivalent to a

random time period of information arrival for VPUrivation. However, the simplest theory of

PIN has information taking place over equal tim@sjrsuch as a trading day. Namely, PIN is a

probability measure for a given time unit wheredINV is a probability measure for a given

fixed-sized trading volume. To improve on Easlegles (2012b) method of moment estimation

(MME) for VPIN, this study proposes incorporatirfgetvolume time via maximum likelihood

estimation (MLE).

The remainder of this study is organized as follo@sction 2 provides a simple numeric

illustration for explaining PIN, VPIN and their tBfence. Section 3 provides a description of our

derived model for VPIN, which is based on the vadubucket. In Section 4, we derive the

analytic VPIN metric and show that the VPIN meagara probability of informed trading in the

condition of a fixed trading volume. By contrashetoriginal PIN estimator generates a

probability estimate with respect to a given timéival. Section 5 provides the estimation of
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VPIN with volume time via MLE. Section 6 performssemple empirical test using the trading
data of SYP, which are the exchange traded funds&t 500 stock index. Finally, Section 7
offers the summary and conclusions.

2. A Simple Numeric lllustration

[TABLE 1 ABOUT HERE]

In Table 1, we construct a numeric example to destnate the difference between PIN and
VPIN, and the effect of volume time setting on éfiectiveness in estimating these measures. In
this example, we assume that arrival rates of mathformed buyers and sellers are equal, that
the news type is known, and that one share is @ue t Accordingly, we obtain approximate
MLE estimates for PIN and VPIN. Moreover, with news, we set that buy and sell volume$ (
and V) are equal. Then, Easley et al.’s (2012b) MME,akhinay generate PIN or VPIN, also
perfectly identify the emerging event. Furthermdhes trading imbalance can directly measure
the informed trading. Thus, the MME estimates camgare with the MLE estimates.

In Panels Ato D of this example, the proportionegént periods is the MLE estimate for
the probability of information occurrenc&he estimate for uninformed buyers and sellers’

arrival rates is the total sum of all buy volumesni no news as well as bad news periods, and
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all the sell volumes from no news as well as goedisiperiods, divided by the total sum of

corresponding times. The informed traders will he buyers when the event is good news and

will be the sellers when it is bad news. Thereftlte,sum of aggregate buy volumes during good

news periods and aggregate sell volumes duringneag periods, divided by the total sum of

corresponding times, and then minus the estimatarfmformed buyers and sellers’ arrival rates,

is the estimate of informed traders’ arrival rdtareover, Easley et al.'s MME is the mean (or

sum) of imbalanced trading volumes divided by theam (or sum) of total trading volumes

based on the fixed-length time periods or on thedisized buckets.

For instance, in Panel A of Table 1, these MLEnestes based on time bars are as follows:

the probability of information event is 0.4 = 6/1Be uninformed traders’ arrival rate is 100 =

(18x100+2¢(2x75+150))/(1&1+2x(2x1+1)), and the informed traders’ arrival rate i§ 20300

— 100, where 300 = g&2x225 +450))/(%(2x1+1)). Then, by definition, we obtain the PIN MLE

estimate 0.286 = (0x200)/(0.4200+2100), which is the ratio of mean informed trading

volume to mean total volume for a given fixed tileegth. Moreover, the VPIN estimate is 0.2 =

0.4%(200/(200+%100)), which is the probability of information asal further multiplied by the

ratio of the informed trading volume to a fixedabotrading volume conditioned on the event

occurrence. Easley et al.’'s MME generates the RitNnate, 0.286 = 80/280 = &R25-75| +

2x|450-150] + %|100-100()/15) / ((&|225+75| + |450+150| + 8]100+100[)/15).
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Panel A shows that, with the buy and sell volumesasared in a fixed time length, the

Easley et al.’s MME of 0.286 serves as a measurPIifd, which is the probability with respect

to a given time bar. Panels B and C show that,chbasdrading volumes from the same time bars

in Panel A, the buy and sell volumes are aggredatethe trading days with a fixed three time

units and for buckets with a fixed volume of 60Ggs and a varied time length. Based on

trading days under the Panel B, the Easley et BIME of 0.286 measures the PIN. Based on

the buckets in Panel C, Easley et al.'s MME of 6.@8asures VPIN instead of PIN because it is

equal to the MLE estimate of VPIN, and is the phility under the condition of a fixed volume

of 600 shares. This shows our argument that thied/gime length, which is inconsistent with

the assumption implied by original PIN, resultsdifferent probability measures for informed

trading derived via Easley et al.’s MME.

Panels C and D show that the trading imbalanckedrshort volume time may help improve

the MLE estimates of PIN and VPIN. Panel D has @iamolume times in both buckets 1 and 3

than Panel C does. This may mean that the condsfmwn in Panel D has more informed

traders in these buckets than that in Panel C dondsshould generate a greater PIN or VPIN.

Easley et al.’'s MME does not change for either pané the MLE estimates of PIN and VPIN

are greater in Panel D. Namely, the MLE helps inapropon Easley et al.’s VPIN metric, which

does not incorporate the information of volume time
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Finally, the Easley et al.’'s MME estimates basedime bars, trading days and buckets are
not always equal to one another. In this papergd&monstrate the issue using a special case, in
which the news types are known and there are dqueand sell volumes in no news periods.

3. Modeling VPIN

To simplify our modeling, we assume that each tiaqeerfectly signed. Namely, we do not
need any algorithm to sort trades. As mentioneHasley et al. (2014), the trade classification
decision can be made independently from the VPIime

Let B and S denote the numbers of buyer- and seller-initidgtades (or buys and sells)
during a given (unit) trading periadThe notation Poig( A1) = e”¥/x! denotes the probability
density function of Poisson variabtavith arrival rate.

In the PIN model (Easley et al., 1996, 2002), thietjprobability density function (p.d.f.) of
Poisson variableB; and S can be specified as

f(Bi, S; 8) = ad(Bi, S|bad newsg)
+ a (1 - 9)f(Bi, S|good newsB) + (1 — o)f(Bi, S| no newsp) (1)
= adPoisBi; &)PoIsSE; &+ L)
+ a (1 - JPoisB;; & + L)PoISE; &) + (1 — a)PoisBi; &)PoisS; &),
wherea is the probability of an information event occagiduring the given trading periogdo

and (1- J) are the conditional probabilities of bad and goedvs types, respectivel$; (&) is
7



the arrival rate of uninformed buys (sellg)is the arrival rate of informed trades; and vector
0=(a, o U, &, &) represents the structural parameters.

Replacing buys and selB; andS, respectively, with the buy and sell voluméé?, and V,S
Easley et al. (2011, 2012b) modify the PIN modeapply to high-frequency markets. That is,
they treat each reported trade as an aggregatitadds of unit size. Accordingly, for example,
they treat one trade for five shares at a certdae p the same as five trades of one share, each
at pricep. The extension implies tha\l‘i3 and ViS are also Poisson variables and that their joint
p.d.f. may be specified as

f(V°, V3 8) = ad(V7, Vi]bad news8)
+a(1- Jf(V;, Viigood newsd) + (1 - a)f(V>, ViIno newsp) 0)
= aéPoisMB; &)PoisY;; &+ L)
+a(l- é)Pois(\/?; &+ a)PoisMS; & +(1- a)Pois(\/iB; ,sb)PoisMS; &).

Easley et al. (2011, 2012b) group sequential trad&s equal volume buckets of an
exogenously defined si2é A volume bucket is, therefore, a collection @fdes with volumé/.

Let 7 = 1, 2, ...,n be the index of equal volume buckets. For eaclunael bucketr, a
corresponding random time intervah, with a length that equals volume tintg exists.
Therefore, the volume in the buckets the sum of\/li3 and V,S in a random time intervadr

such thatZtiT(ViB +ViS) =V, where ViB and ViS may be treated as the buy and sell volumes,
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respectively, in a (unit) time bar For each volume bucket the volumes of buy and se\M?
=ZtiTV? and V§=mervis may be calculated witly, = V? + Vf = V. Easley et al. (2011,
2012b) implicitly assume for the VPIN metric thack information event affects a volume
bucket with the probabilityr.? Namely, after an information event occurs, thecetien of the
informed trader’s order may be completed in a vauucket. This assumption suggests that the
PIN and VPIN models are similar but not fully ecaient. In contrast to the PIN setting, the
VPIN setting assumes that informed traders subineiir touy or sell orders by volume bucket
instead of calendar time interval.

Easley et al. (2012b) derive the VPIN estimatoredasn the argument of two moment
conditions,E[|V? - Vj] = au andE[V? + Vj = 2&+ ay, from the Poisson processes. Using our
notations, the two moment conditions should insteaéxpressed as

E[V° - VIkr; 6] = autrand

E[V; + Vit: 6] = 26+ ap t 3)

% Easley et al. (2012b, p. 1469) make the follovasgumption: “We divide the trading day into eqizéd volume
buckets and treat each volume bucket as equivideatperiod for information arrival.” Following Hay et al.
(2011, 2012b), we s&tas the one-fiftieth of the mean daily volume, angser may obtain the VPIN metric with 50
volume buckets on a trading day. If an informat@rent occurs only once each day and does not faltasy

assumption, these 50 buckets will come from thees@onditional) Poisson distribution and VP#Nw/(2¢+ 1) or

0/(2¢)=0, of which both do not include.



wheret;is a given fixed unit time interval and may becided to 1, and volum¢é is not equal to
the sum ofV? and V? which is a random variable. However, according:ésley et al. (2011,
2012b), VBT and V? do not follow independent Poisson distributionse do the exogenous
constraintV = V? + V? This issue is not relevant for a calendar timenral (such as one
trading day) becaus&’? and V? can take arbitrary realized values. Namely, thésdem
processes for trade arrivals are not directly imaletable on a volume bucKet.

After we derive the valid moment conditions, wewhhat VPIN and PIN measures have
different definitions. In line with Easley et al.2011, 2012b) estimation procedure, in the
following discussion we accurately model volume dim as randomly determined by an
exogenously defined si2éand show that the VPIN metric is actually calcedbased oE[|V?

— V)V: 8] = V oyl (2¢ + 1] and E[V2 + VIV; 8] =V, where volume time; is integrated out
in the expectation.

According to the previous descriptions, the joind.p of V?, Vf and t; given V by
rewriting the Eq. (2) is

V2, Vo tV; ) = ad(Ve, V>, 1}V, bad newse)
+a(1-Of(Vo, Vo tlV, good newsd) + (1 - a)f(Ve, V5 tV, no news). (4)

In Eq. (1) or Eq. (2), an information event affett@des in a given trading period, which is

® We appreciate the anonymous reviewer’s useful cemtm
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regarded as a time bar. In contrast, in Eq. (4)nformation event affects the trades in a volume
bucket, which corresponds to more than one time bar
To express EqQ. (4) in a closed form, we té(kéf, Vf t.]V, no news®) for an illustration.
First, for givent; (or, say,w),
B . B .
f(V,, V,|t; no newsP) = Poisy trsb)P0|sN§; &) (5)

becauseV?=Z- Ve V§=Z V? andViS are Poisson variables (as defined in the PIN

0w, " i 0w, ¥ i

model). LetVBr = V? andV = V'i + Vf; we derive the following joint p.d.f. of/? andV via

the probability theory (see Hogg and Craig, 1996,165-166):

f(V?, V|t;, no newsp) = f(V?|V, t;, no newsP) f(Vit;, no newsP)

B /& .
=BV, V, ——)PoisV; t;& + t&
\E t& +tr£S) Vit + 1)
B. &b :
=B : +
(\/T’ V, Eb + gS)POISN’ tTEb trgs), (6)

where Bk, m, p) = xl(m{x)l pP(1p)™ with x = 1, 2, ...,m is the p.d.f. of the binomial

distribution. Furthermore, because\of V? + V)

T

f(V?, Vjtr, V, no newsg)

= f(Vli|V, t;, N0 newsP) = f(VflV, t; N0 newsP)

=B(V;;V, —2)=B(V} Vv, =), ™

& t+ & & t+ &

Second, becaus@/|t;, no newsp) is equal to Poi&(; t:& + t£), the timet, needed to reach

exactlyV cumulative trading volume follows the distribution
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f(t]V, no newsP) = Gammal; V, & + &), (8)
where Gamma{ k, 1) = e */r (k) is the p.d.f. of the Gamma distribution with> 0 and
rk = fzyk'le'ydy. The p.d.f. Gamma(k, A) is typically adopted to model the wait time urttié
kth event occurrence for a Poisson process witharrateA (for details, see Hogg and Craig,
1995, pp. 131-133).

According to Eq. (7) and Eq. (8), the joint p.a@f. VE, V? andt; givenV with respect to no
news arrival may be further expressed as
f(V?, Vf t4V, no newsp)

= f(V VS|tr, V, no news@) f(t]V, no newsp) 9)

=BV, 'sbg)KBamma(r; V, & + &)
S

&b
& .
= . —_ + .
BV, V, £b+£S)KBamma(r, V, &+ &)
Furthermore, the joint p.d.f. o\ﬂi VE, andt; givenV s
(V2 Vo tv; 8)

B &b .
= ; mm + &+
adoB(V,V, P })[Ga al; V, &+ &+ L)

+a(1-9 BNV, L’“})@amma(r, V, & + &+ L)

+(1-a)B(V5V V, & + &) (10)
= créB(VS V, ;)KBamma(r, V, &+ &+ 1)
+a(l-9 B(VS V, })KBamma(r, V,&+ &+ L)
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'V, &t &).
4. Deriving the VPIN Metric

The estimate in Eq. (10) is more efficient becatis® complete information set with
variablesV?, Vf andt; is adopted. However, if we integrate out the wwdutimet;, we can
derivef(V>, VIV 0) as

V7, VIV; 8) = [THVoV) tV; B)dt,

B &
=aoB(\V.;V, ———
(V; £b+£s+;)

_ B. &S+ U _ B, &
+a(l-9B(V,;V, Py })+(1 a)B(V,;V, s S) (11)

= adB(V Vv, — ST H
a ( b+5s /)

&

V, — & yia1-aB(VV, —5&
£b+£+}) ( )B(V, Py

S

+a(l-9B ).

s
VPIN can be estimated using onW?, and Vf with Eq. (11), but the estimates are less efficien
That is, the VPIN estimates with Eq. (11) have tgeatandard errors than those of Eq. (10)
because Eq. (11) does not include the volume tamialiet,.

Moreover, ifx follows the binomial distribution, of which thedaf. is B&; m, p) with x = 0,

1, 2, ...,m, we can derive the following approximation usirmsen's inequality for a large

and ap diverging from 0.5 (see Figure 1):

* With Jensen's inequalitg[jm - 2x|J/m > [E[m-2X]|/m = Rp- 1| andE[Jm-2x]}/m = E{[(m-2x3*3/m <
{E[(m - 2%7} Y¥m= {[(2p - 1) + 4p(1 - p)/m[} ¥* = |2p - 1] for a largem. Therefore E[Jm — 2q] = m|2p — 1| asn
becomes large.
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E[lm— 2] = m|2p - 1]. (12)

[FIGURE 1 ABOUT HERE]

Then, with Eq. (11) and Eq. (12), we derive théof@ing result:

B _ o] ~ I @+w| (& + 4) — & & — &
E[VS - VIV; 6] = adv- vy +a(l - V. Py +(1- a)v“gs (13)

Following Easley et al. (2012b), we #t & = £and rewrite Eq. (13) as

E[V; NE’—'U—+ 1- g vgt— =y 14
(V7 — ViV: 6] = a3 a@-gvgto =vgil, (14)

Therefore, we obtain the estimator of Easley e28l12b) for VPIN as

EVP|NEZ:1|VBr Vi _ 2V ’V Vel L _ou (15)
v Zrzlvr/n V. 2e+u

which does not approximately measurg/(2¢ + ai), the expectation of Easley et al. (2012b).
Hereafter, VPIN is defined asu/(& + &+ 1). That is, VPINE aul(& + &+ 1i). Based on
this definition, the VPIN is a measure from the Bsitheorem for the probability of informed
trading given a fixed-sized trading volume. By aast, the original PIN aul(& + &+ ap)
measures the probability of the informed tradingef@iven fixed time interval.
That is, VPIN (PIN) is an expectation conditionedt(conditioned) on the volume bucket.

Specifically, VPIN measures the percentage of mfd trading for a given fixed number of

14



transactions, whereas PIN measures the probabiliigformed trading over a given tiny time
interval, during which only a single transactiorcocs. VPIN may be explained intuitively as
follows. In buckets in which no event occurs, tihéval rate of trades i, + &, and the relative
arrival rate of informed to total trades is zers,r informed trades occur. In buckets during
which an event occurs, the arrival rategist & + (. Informed trades, if they exist, arrive at rate
M. Therefore, the relative arrival rate of informedtotal trades in buckets in which an event
occurs ispl(& + &+ ). Information events occur with probability, so that the expected
relative arrival rate of informed to total tradesiil/(&, + & + L).

Analogously, Easley et al.’'s VPIN metric (EVPIN)}uitively measures VPIN rather than
PIN for & = & = & Suppose that the volume of trading imbalance oreasnformed trading.
When & = & = & a trading imbalance may be triggered by a newsnewuch as the
announcement of a firm successor. Thus, a largallstading imbalance suggests a news
(no-new) regime with a high (Iow)/? —VjN = W2e+ 1) (=0). Easley et al.’'s VPIN metric,
which may be treated as the mean ratio of the ianlza#ld volume to the total trading volume, is
alil(2¢ + L), that is, the probability of the event times grebability of informed trading within
a news regime.

Adopting a Monte Carlo simulation using Eg. (11)wixed V = 500 anch = 50 (buckets),

15



we verify our procedurg.We takea from {0, 0.1, 0.2, ..., 1} angs from {0, 50, 100, ..., 500}
and then sef, = & = (V — au)/2. For each node otr( 1), we generate 1,000 samples with gize

= 50 and calculate the EVPIN and the mean measumegner. Figure 2 plots the results. Panel
A (Panel B) shows mean error in measuring the &N (PIN) value using EVPINlefined

as EVPIN- VPIN (EVPIN - PIN) from 1,000 Monte Carlo simulations. Panel Awk a more
stable mean measurement error than that in PanEh&se results suggest that EVPIN captures

the VPIN value instead of the PIN value.

[FIGURE 2 ABOUT HERE]

Andersen and Bondarenko (2014a) provide a moraggrexpression and approximation of

B . . . .
E[lV, - V§||\/; 0] when the trade direction is randomly determin@dhey express the

approximation undesgs = & = eandy= 0 (ora = 0) a8

® According to the pseudo code in the appendix cfl&aet al. (2012b), the buy and sell volumvg, (\/§)

generated by their Monte Carlo simulation do néisBathe condition\/BT + Vf = V. Therefore, their simulation is

inconsistent with the estimation procedure of VPIN.

® Andersen and Bondarenko (2014a) derive the appation under the assumption that the trade claasidin
scheme generates a purely random buy-sell indicaithr probability 1/2. However, if the trade cld&sition
procedure works well, it will generate the buy—$adicator with the probability determined by theizal rates of
buy and sell orders. Therefore, the probability itdplies thats, = § = candu = 0 (or thats; = § = €anda = 0).
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@v)  _ i’ (16)

22Vylyl v

E[V? - VIV; 8=(a, 30, & 8] =

where v is an integer subject td = 2v orV = 2v + 1. Eg. (16) implies that EVPIN may be
inappropriate for small volume buckets and infrequenformed trades because Eq. (15)
generates a greater measurement error under thediiens’ Figure 1 supports this intuition.
Furthermore, given Eqg. (11), EVPIN ignores the infation provided by the volume time
variablet;, and failing to incorporate leads to inefficiency in estimating VPIN. Accordin we

propose an MLE procedure for the VPIN metric, whigdiscuss in the next section.

5. Estimating VPIN with Volume Time via MLE

Based on Eg. (10), Eq. (11), and Eq. (15), EVPINeaps to ignore information regarding
volume timet, That is, in practice, EVPIN fails to meet the egfation of Easley et al. (2012b).
To solve this problem, we follow the original PlNtienation and incorporate the volume time

variable into the VPIN estimation via MLE.

Moreover, without the trade classification, we nsamply treat that as if only a trade of one shareucs in a tiny
time bar, and thu¥ is the number of time bar®, as defined in Andersen and Bondarenko (2014a).

" In our opinion, Andersen and Bondarenko’s (203, 13—14) Findings 2 and 3 are the results ofwtbese
performance of Easley et al.’s (2012b) VPIN metnzlerg = & = £ andy = 0. A large bucket contains a large
number of time bars. Then, Easley et al.’s VPINriogtenerates a small estimate of imbalance oraledsa VPIN
estimate of approximately zero dueite 0 and the law of large numbers.
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With the assumption that the volume bucketsl, 2, ...,n are independent of one another,
. . . . . B
the (log-)likelihoodL(B|D) of observing a series df/?, Vf t) with V, + Vf =V over then
volume buckets is the sum of the log of p.dL{BIV>, V> t) = log(V>, V5, t] V: 8)):2
L(@D) = 2 Li(8IV,, V, tr) = 2log(f(V5 V.. td V; 9)), (17)
=1 =1

whereD E{ (VBT v, tr)} ~.... represents the buy and sell volumes and the volimes for
the volume buckets=1, 2, ...,n. Vli and V? may be determined by the signed trading data or
the trade classification algorithms (see Easlewlgt2012a). With arappropriate numerical

method, 8, = (a1, A, 4, &, &) is the consistent estimate 8fby MLE using Eq. (17). We

denote the estimates from (17) by the substriphen, the improved PIN estimate, given is

IPIN = ap____ (18)
ot &+ il

and the improved VPIN estimate is

IVPIN=— 94 (19)
St &t U

In contrast, undes, # &, an investor cannot adopt the observed imbalaraer dow directly to

estimate VPIN because she cannot exclude the plagsiihat the imbalance results from

8 The L.(9|V?, Vf t;) may be simplified for the stable numerical conmpgistability via a similar means adopted by
Lin and Ke (2011). The reformulatdaq{9|\/?, Vf t) is log(expéri—€rmay + EXPErr—€rmay) + EXPEr3—€rmay), Where
&1 = log@d) + Vlog(s) + Viog(a+h) - tia+ &+, &2 = log@(1d)) + Viog(a+h) + Viog(e) - tda&+h),
e3=log(la) + V?Iog(sb) + Vflog(ss) - t{&t&), ande;max = Maxe: 1, €2, €;3).
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liquidity trading during a no-news period.

Unlike VPIN, the PIN metric measures the probapitf informed trading within a fixed
time interval. The number of trades occurring witkeiach fixed time interval is unknown. PIN
identifies the number of informed trades among ttlades that occur during each fixed time
interval. The VPIN metric, in contrast, measures piobability of informed trading for a given
trading volume. Therefore, VPIN is the ratio ofdnmhed trades for a given fixed number of
trades. The time needed to accumulate the giverbauof trades is a priori unknown. Namely,
PIN and VPIN measure the probabilities based deréifit data constructions from the same raw
data set.

Adopting a simulation using Eq. (10) with a fixemshal V = 50 andn = 50 (buckets), we
verify the performance for small volume buckets. tale a from {0, 0.1, 0.2, ..., 1} ang:/from
{0, 5, 10, ..., 50}, and set, = & = (V — aw)/2. For each node ot 1), we generate 50 samples
with n = 50 and calculate IVPIN and EVPIN and their mesasurement errors. Figure 3 plots
the results. Panel A (Panel B) presents mean efrestimating the actual VPIN value using
IVPIN (EVPIN) defined as IVPIN-VPIN (EVPIN-VPIN) from 50 simulations (for each

node)? Panel A shows a more stable mean measurementlearothat in Panel B. These results

° As we increase the number of simulations that eredact, the plot becomes smoother; however, thegssalso
becomes more time consuming. Therefore, we perffirsimulations for each node.
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suggest that IVPIN is more suitable for small vodubuckets than EVPIN.

Figure 3 also implies the significant marginal petidg power of volume time in
estimating VPIN. Ifizis small, volume time is likely to be large acaagito Eq. (10). Therefore,
when volume time is larggs may be small, and thus the difference betweenNvétid EVPIN
may become large. However, wheais large, the difference between IVPIN and EVRNmall
regardless of volume time. Namely, the marginakaffof volume time becomes more
pronounced ag/ decreases. Thus, volume time may be more bernletficihe identification of

informed trading for less frequently traded stocks.

[FIGURE 3 ABOUT HERE]

6. Empirical Tests

Using the trading data of SYP, the ETF of S&P 5@ls index, from the Trade and Quote
(TAQ) database, we calculate EVPIN and estimaté\VR4 MLE both with and without volume
time t; on May 6, 2010. We use the one-fiftieth of the mdaily trading volume in 2010 to set
the bucket size, which is approximately 3,694,243.3hares. We use the bulk classification
algorithm (Easley et al., 2012a) with a one-mirtiriee bar to calculate the volumes of buy and

sell, V? and Vi respectively. For a time bar, if the cumulati@dwne exceed¥, we assume
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that the trades are uniformly distributed and thalnulatevli, Vf andt; proportionally.

For each rolling window of 50 buckets, we calculatgh EVPIN and IVPIN. To improve
the computational efficiency of IVPIN, we set tlodugion of the previous rolling window as the
initial value of the subsequent one. If the presisolution fails to optimize the MLE problem,
we generate another 25 initial values and rerunofitemization. We obtain IVPIN using the
log-likelihood function Eq. (17), which is based &g. (10) with volume times. We also
calculate VPIN via MLE based on Eq. (11), which slo®t include volume times, with the
constraint ofss + & = 1 and the following log-likelihood function:

Lm(8D’) = gL(ew‘i, V) = %log(f(v?, V]v;9)), (20)
where D’ E{ (V? V?)} ~1..... We denote the estimates from Eq. (20) by the ifiisM.
Moreover, the VPIN (PIN) estimate from Eqg. (20) MVPIN (MPIN), which does not

incorporate any volume time information. The MVR#\he MLE version of EVPIN.
[FIGURE 4 ABOUT HERE]

Figures 4A and 4B show the price of SYP and EVPiN solume time, respectively. The
price drops substantially during the flash crasitwben 14:30 and 14:48. EVPIN keeps

increasing before, during, and after the flash lerdshe phenomenon is consistent with the
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observation of Andersen and Bondarenko (2013a)EN&RIN does not peak during the crash.
On the other hand, the volume time appears to dsereefore the crash, reach the bottom during

the crash, and then increase after the crashiffbisnation is useful for estimating VPIN.

[FIGURE 5 ABOUT HERE]

Figure 5 shows the estimates from MLE with and auithvolume timet,. After the crash,
these figures show different patterns. In PanethB, MVPIN is closer to EVPIN than MPIN.
This result is consistent with that of our simwdatitest in Figure 2. This difference is from the
non-extremeay (Panel D)™ and the increasingm/au (Panel H), wheresy = &w + &u = 1.
Moreover, the three estimates, EVPIN, MVPIN, andINiFeep increasing after the crash. In
contrast, Panel A shows that IPIINPIN) moves within a narrow (a somewhat tighteand and
declines slightly. Therefore, Panels A and B shiesvihcremental effect of incorporating volume
time, which improves the reasonability of VPIN asites after the crash.

After the crash the MLE generates increasipgev (Figure 5, Panel H). In contragt/&
decreases (Panel G), wheres &, + &. Along with increasingn (Panel C), these results create

a flatter pattern in Panel A than in Panel B affter crash. Namely, after the crash, uninformed

10 Whena =1 or 0, VPIN = PIN.
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traders keep selling their shares and thus addh¢ootder flow imbalance. Without any
information regarding;, the market maker may perceive that the extenhfofrmed trading
increases. However, with an increastnghe market maker can recognize that sell ordersna
fact submitted by uninformed traders.

Panel A of Figure 5 shows that IVPIN responds eatlhan EVPIN. Specifically, IVPIN
(EVPIN) starts to rise at approximately 13:30 (I} The difference between IVPIN and
EVPIN appears to be based on whether informati@arcténg volume time is used in the
estimation. Panel A shows that before the crastenwdolume time is large, the difference is
large. In contrast, during the crash period, wheluwme time is small, the difference is small.
Moreover,a; andd differ significantly fromaw and dy.*?

In summary, incorporating volume time variabtg belps improve the predictability of
VPIN for the flow toxicity. Furthermore, the estitea of VPIN parameter sets generated by the
estimation procedure that includesdiffer significantly from the estimates generated the
procedure that excludes

7. Conclusion

™ The cumulative probability of IVPIN from the emigll cumulative distribution appears to start gsiat
approximately 13:30, and the one of EVPIN beginsge at approximately 14:00.
' variables needed to explain their differencesudel (i) the extent of market efficiency and (ii) ether the
informed traders divide the trade into a large nendd smaller orders. Specifically, if the markeefficient and the
informed trader chooses not to divide her trades,ewxpect a zigzag pattern of tagand 4. In contrast, if the
market is inefficient and the informed trader descher trades into many orders, we expect a snpaitarn fora
andd.
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We model the VPIN and the derived VPIN metric frdm PIN model, demonstrating that
VPIN and PIN metrics are different measures. VPIMaBsures the percentage of informed
trading for a given fixed number of transactionsieveas PIN measures the probability of the
informed trading over a given tiny time intervalyrshg which only a single transaction occurs.
Building on Easley et al. (2011, 2012b), who detive VPIN metric and provide evidence of its
usefulness, we then expand theoretical basis ahthael and clarify its derivation.

The logical inconsistency between Easley et alPAN/and PIN metrics primarily results
from determining the bucket by fixed-sized tradimgume. If the bucket is determined by
certain conditions, such as price duration as igl&and Russell (1997, 1998), a revised Easley
et al.’s VPIN metric (EVPIN) may serve as an estonaf PIN, but the other revised VPIN
metrics may not® In contrast, our VPIN estimator (IVPIN) may be wid as a Bayesian
estimator of VPIN givelv.

Our proposed generalized VPIN estimation measuteasadly applicable. It extends the
usefulness of the original VPIN metric for smallwume bucket and infrequent informed trading
conditions. Specifically, small bucket volume magult in overestimating order imbalance and

thus a large VPIN estimate even when no informeadimg occurs?® Thus, market

13 A revised EVPIN,(Z;'V? —vfytr)/(z;‘lvr /t,), may serve as the estimator of Pila/(s, + &+ ap)), but

the other revised EVPINT. " VAV V,, may still be the estimator of VPIN @ui(& + & + 1)).
=1l "7 T

1 This result is consistent with Findings 2 and Rnélersen and Bondarenko (2014a, pp. 13-14).
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microstructure studies that apply Easley et alRIN/ metric need to establish a clear criterion

for a high-frequency market to avoid includingleit samples securities with infrequent trades.

From a practical perspective, even in a high-fregyemarket, Easley et al.’s VPIN metric

may mislead market makers. For example, an imbalanay exist when an overwhelming

number of liquidity trades accompanies fairly fear (o) informed trades. Also, market makers

may base their bid and ask quotes on a small volomeget in an attempt to reduce or cover

inventory costs or to shorten the reaction timee MPIN metric may be overstated in these

situations and lead to a wide bid—ask spread, ltlygeppardizing operational efficiency in the

market.

Despite the simplicity in calculating VPIN, Easley al.’s (2012b) estimation procedure

ignores volume time informatior;), which may be crucial. Accordingly, we providestNILE

procedure for the VPIN and PIN with volume time,jigthremains valid in an infrequent market.

We also show that volume time helps to improve ghedictability of VPIN for flow toxicity.

The MLE of VPIN may be useful for assets pricingds¢s that choose to replace PIN with VPIN.

Both PIN € aul(& + &+ ap)) and VPIN E apd (& + & + 1)) can be calculated based on buckets

via MLE: Which metric is empirically advantageogsanother issue. Furthermore, MLE can be

applied with various bucket sizes. Determining tight bucket size is not a trivial matter, and

one-fiftieth of mean daily volume, as reported iiopstudies, serves merely as one alternative.
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We incorporate volume time in a microstructure niddesed on the PIN setting of Easley et

al. (1996; 2002). With this model, market makerdhomly traded stocks may update their bid

and ask quotes with long rolling windows to infaetdegree of information asymmetry using

cumulative trading volume. With this proposed prhae for modeling VPIN, extended PIN

models can potentially incorporate the volume btickariable to estimate information

parameters (e.g., Duarte and Young, 2009.)
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Panel A Panel B
Figure 1: Panel A depicts the functioffm, p) = E[Jm — 2], wherex follows the binomial
distribution Bk; m, p). Panel B depicts the functidm, p) = m|2p — 1|.

Interpretation: This figure shows tha[|m — 2¢|] = m|2p — 1| wherx follows the binomial distribution, of which

the p.d.f. is B, m, p) withx =0, 1, 2, ...m. Moreover, whem is small orp is approaching 0.5, the approximation

is inaccurate.
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Panel A Panel B
Figure 2: Panel A showshe mean error in measuring the actual VPIN valsiagiEVPIN. In
contrastPanel B presents the mean error in measuring tin@laeIN value using EVPINBoth
panels result from 1,000 Monte Carlo simulationhw=500 anch = 50.

Interpretation: This figure shows that EVPIN is the estimator oPIM = au/(& + &+ ) rather than PIN

= aul(& + &+ a) when the simulation itself fits the assumptiorfieéd-sized volume bucket.
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Panel A Panel B
Figure 3: Panel A shows the mean error in measuring the BetalN value using IVPIN.In
contrast, Panel B presents the mean error in mieagstire actual VPIN value using EVPIN.
Both panels result from 50 Monte Carlo simulatienth V=50 andn = 50.

Interpretation: This figure suggests that IVPIN is more suitablesimall volume buckets than EVPIN. In addition,
it implies the significant marginal predicting paws volume time in estimating VPIN because IVPh¢drporates

the information of volume time.
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Panel A: ETF Price and EVPIN Panel B: Volume time

Figure 4: Panel A shows the (ending) stock price of SPY BW&IN at the end of each bucket.
Panel B shows the volume time at the end of eacheiu

Interpretation: This figure shows that EVPIN keeps increasing teefduring, and after the flash crash. Namely,

EVPIN does not peak during the crash. On the dtlaed, the volume time appears to decrease beferer#ish,

reach the bottom during the crash, and then inerefisr the crash. This information is useful fetiraating VPIN.
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Panel A: IVPIN Panel B: MVPIN

- e IVPIN —ay, e MVPIN
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Panel Co Panel Do
— é; AAAAA IVPIN " — 5M ..... MVPIN
2010/5/6 14:30---2010/5/6 14:48 o —2010/5/6 14:30---2010/5/6 14:48

Panel va

—ule e IVPIN L Hla - MVPIN

2010/5/6 14:30 ---2010/5/6 14:48 \/ij\ " 2010/5/6 14:30 ---2010/5/6 14:48

Panel G/ g Panel Hia/ &uv
Figure 5: Panels A, C, E and G show the estimates from Ef. Witht,. Panels B, D, F and H

show the estimates from Eq. (20) withoutFor MLE of Eq. (20), we set the constraa & +
& =1 to obtain the unique solution. For each pandiyvéen the two vertical lines we depict the
flash crash between 14:30 and 14:48. We set thimgtiche to be 14:48 because at which there
is a lowest bucket end price.
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Interpretation: Incorporating volume time variable,)( helps improve the predictability of VPIN for tHew
toxicity. Specifically, after the crash, the esttesof VPIN parameter sets generated by the es&imptocedure

that includeg; differ significantly from the estimates generabgtthe procedure that excludes
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Panel A: Estimates based on time bars with one time unit.

News Type Good News Bad News No News MME MLE( =04
Time Bari 1 2 3 4 5 6 7 8 910 11 12 13 14 15M°-Vvf 80 u 200
Buy vol. V® 22t 228 45 75 75 15C 100 100 100100 100 10010C 10C 100 (v®+V°) 280 g 100
Sellvol. V* 75 75 15( 22E 228 45C 10C 10C 10C 10C 10C 10C 10C 10C 10C|PIN;  0.266 PIN, 0.2¢6
Time Unit 11 1 1 1 1 1 1 1 1 1 1 1 1 1VPIN - VPIN; 0.2
Panel B: Estimates based on trading days with three times.uni

News Type Good News Bad News No News MME MLE( ¢=0.4)
Dayt 1 2 3 4 5Me-vT  24C 20C
Buy vol. v 90C 30C 300 300 300 (W°+V°) 840 & 100
Sellvol. v® 30C 90C 300 300 30(PIN; 0.286 PIN; 0.286
Trading Time 3 3 3 3 3 VPIN; - VPIN; 0.2
Panel C: Estimatesbased orbuckets withfixed tradingvolume of 60C share.

News Type Good News Bad News No News MME MLE( a,=0.57])
Bucketr 1 2 3 4 5 6 7Ive-ve| 1714 p, 200
Buy vol. v* 45( 45( 15C 15C 30C 30C 30C| (V2 +Vv°) 60C & 10C
Sellvol. v 15C 15C 45( 45(C 300 300 30( PIN, - PIN, 0.364
\olume Time 2 1 2 1 3 3 3 VPIN, 0.286 VPIN, 0.286
Panel D: Estimates based on buckets with fixed trading velwf600 shares and short volume time

News Type Good New: Bad New: No News MME MLE( a;=0.57))
Bucketr 1 2 3 4 5 6 7IVe -V 1714 p, 340.90
Buy vol. v* 45( 45(C 15C 15C 300 300 30Q(v2+v°) 600 & 109.09
Sellvol. v?* 15C 15C 45C 45( 300 300 30( PIN, - PIN, 0.472
\Volume Time 1 1 1 1 3 3 3 VPIN, 0.286 VPIN, 0.348

Table 1: A simple numeric illustration for estimating PINcA/PIN.

Assuming equal arrival rates for unformed buyeid sgllers &, = & = £) and that the news type
is known, we can obtain approximate MLE estimatastlie probability of information event
occurrencer, the informed traders’ arrival rageand the uninformed traders’ arrival rateFor
instance, in Panel C, these MLE estimates are etras follows:a, = 4/7 = 0.571, & =
(6x300+2¢(150+150))/(&1+2%(2+1)) = 100, + 1 = (2x(450+450))/(%(2+1)) = 300, and; =
300 — 100 = 200Then, PIN MLE estimate is 0.364 =& {)/(2¢; + a;) and VPIN estimate is
0.286 =ax(ud(2&; + 1)). Moreover, Easley et al.’s (2012b) MME genera@éPIN estimate,
0.286 =|v°-V?® / (vrB +VTS)= ((4x|450-150|+3¢|300-300|)/7)/((4|450+150[+8|300+300|)/7) =
171.429/600, based on fixed-sized buckets.

Interpretation: Panels A and B show that, when the buy and séliwes are measured in a fixed time length, the
Easley et al’'s MME serves to measure the PIN. BaBand C show that, based on buckets, the Eadley’s
MME measures the VPIN but not the PIN. Panels Camsthow that Easley et al.’s VPIN metric (MME) doest
incorporate the information of volume time.
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