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Major controversy in the financial economics literature surrounds the question of whether

long-run abnormal stock returns are associated with major corporate events. Based

on buy-and-hold abnormal returns (BHARs), Ritter (1991) and Loughran and Rit-

ter (1995) document post-announcement underperformance for initial public offerings

(IPOs). Loughran and Ritter (1995) and Spiess and Affleck-Graves (1995) similarly re-

port underperformance for seasoned equity offerings (SEOs). Other studies by Asquith

(1983), Agarwal et al. (1992), and Mitchell and Stafford (2000) report negative long-run

abnormal returns for acquiring firms in mergers and acquisitions (M&As). Billett et al.

(2011) find that worse performance occurs after multiple issuances of different kinds of

financial claims than after single finance events. And, Michaely et al. (1995) find positive

long-run abnormal stock returns for firms initiating dividends. A common explanation

for anomalous abnormal returns is overreaction as hypothesized by behavioral decision

theory Kahneman and Tversky (1982).1

Other studies report conflicting evidence. For example, Eckbo et al. (2000) find

significant underperformance for IPOs and SEOs using BHARs but insignificant results

using calendar time portfolio alphas. Brav and Gombers (1997) obtain insignificant

long-run results for IPOs after taking into account size and book-to-market ratios (see

also Gompers and Lerner, 2003). Another study by Loughran and Vijh (1997) reports

negative abnormal returns for M&As in general but positive returns for cash deals. Also,

dividend initiation tests by Brav (2000) do not detect abnormal long-run returns after

adjusting for size and book-to-market ratios, but further dividend tests by Boehme and

Sorescu (2002) yield mixed results.

A recent paper by Bessembinder and Zhang (2013) argues that long-run abnormal

returns detected by BHARs are explained by imperfect matching of event firms and

control firms. They demonstrate that the event firms and their size and book-to-market

1See Fama (1998) for a comprehensive discussion of long-run return anomalies and potential expla-
nations, including market efficiency and behavioral models. In this regard, studies by Mitchell and
Stafford (2000), Brav et al. (2000), Eckbo and Norli (2000), Lyandres et al. (2008), and How et al.
(2011) provide different explanations for anomalous long-run stock returns after these corporate events.
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matches differ in terms of unsystematic and systematic firm characteristics found earlier

to be associated with returns. They propose a regression model relating abnormal re-

turns to normalized versions of firm characteristics. With the exception of SEOs, tests

of estimated intercepts (or alphas) indicate significant long-run abnormal returns for

IPOs, M&As, and dividend initiations. However, their results change dramatically with

the addition of squared terms for market and firm-specific characteristics in the model,

as all four corporate events’ alphas become insignificant. Based on these findings, they

infer that long-run abnormal returns do not exist and conclude that regression results

adjusted for risk reconcile previously mixed evidence.2

In this paper we revisit the Bessembinder and Zhang analyses. We agree that us-

ing regression techniques to account for further differences between event firms and

their matches is potentially an excellent approach to control for confounding effects that

otherwise may hamper detection of underlying event effects. Despite this regression ad-

vantage, it turns out that their results are mainly driven by the applied normalization

procedure of the regressors. The procedure introduces incremental non-linearity in the

regression, and the manner by which it is implemented randomizes regression relation-

ships. Our results show that normalization can cause unpredictable effects on alphas

and tends to inflate their standard errors, thereby making even economically relevant

alphas statistically insignificant.

Upon repeating Bessembinder and Zhang regressions with samples aimed to match

theirs as closely as possible for the period 1980 to 2005, our results replicate the above

problems in their results, even though the test results otherwise could not exactly dupli-

cate their findings. For M&A, SEO, and dividend initiation events, we get similar alpha

estimates with normalized characteristics in the regressions. For IPOs, we find that the

mean difference is highly statistically (and economically) significant which, albeit still

economically significant, becomes barely statistically significant in the squared regres-

2Another recent paper by Fu and Huang (2016) finds long-run abnormal returns after share repur-
chases and SEOs before 2002 but not after 2003. They contend that changes in the market environment
account for the disappearance of long-run abnormal returns in recent years.
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sions with normalized factors. More importantly, our results replicate the main problem

of inflated standard errors of alphas in the Bessembinder and Zhang regression approach.

When higher order terms are added to the model, the inflation symptom worsens and

causes even economically meaningful alphas to become statistically insignificant. As

this paper shows, these results can be attributed to the normalization of explanatory

variables. When we repeat their regression analyses and other specifications using non-

normalized factors, significant alphas remain significant with stable standard errors in

all specifications. For these tests, the alpha associated with SEOs becomes more signif-

icant after controlling for characteristic differences. We infer that, even though event

firms differ from their matches in terms of various characteristics, these differences do

not necessarily explain return differences after the events. Also, the characteristic differ-

ences can work as covariates that condition out confounding return effects which mask

the underlying event effect.

The next section discusses problems in normalizing regressor variables and demon-

strates its effects using simulation experiments. Section 2 overviews data and method-

ology. Section 3 gives the empirical results of alternative long-run abnormal return test

approaches. Section 4 concludes.

1 Characteristic normalization

Bessembinder and Zhang (2013) identify seven firm-specific and market-wide character-

istics found in earlier literature that affect stock returns: beta, size, book-to-market,

momentum, illiquidity, idiosyncratic volatility, and investments. Computing differences

of these characteristics between the event firms and their matches, the authors regress

monthly log-return differences between event firms and their matches on these character-

istic differences. Rather than using the initial characteristic differences, they normalize

them cross-sectionally, such that in each (calendar) month, the positive differences in

each firm characteristic are ranked and normalized to be its percentile ranking. Negative
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differences are similarly normalized to their negative percentile rankings. The normalized

values range from −1 to +1, with 0 corresponding to the difference in firm characteristic

closest to 0. At first glance the normalized transformation might seem reasonable, as the

dependent variable (return difference) is a relative measure but many of the explanatory

variables are in absolute values. For example, size is an absolute dollar measure which

in regression can cause problems as the same dollar change amount in size should have

the same average return effect for small and large firms, a counter intuitive effect.

1.1 Incremental non-linearity and alpha effects

Unfortunately, normalization causes a number of severe problems. One problem is in-

cremental non-linearity. The transformation maps the original values to empirical dis-

tribution function values (conditional on negative and positive values). As the empirical

distribution function converges under fairly general conditions to its theoretical distribu-

tion function, we demonstrate the effect on the latter function. For the sake of simplicity,

consider a regression with one explanatory variable. Let y = f(x) be the regression func-

tion, Fp(x) denote the (conditional) distribution function of x given x > 0, and Fn(x)

denote the conditional distribution function of x given x ≤ 0. Then for positive x-values

(for example), u = Fp(x) corresponds to the normalized (positive) values of x. Because

Fp is a distribution function, the inverse function g = F−1
p exists, such that x = g(u).

Thus, the regression in terms of u becomes y = f(g(u)). The degree of non-linearity

in f(g(u)) depends on two source functions of f and g. An extreme case is when they

cancel each other (in which case f would be the distribution function of x). In practice,

due to the nature of the problem and choice of g, they are most likely not related and

both are unknown in most cases. As such, let us approximate first f by the second order

Taylor polynomial around zero, such that

y ≈ α + β1x+ β2x
2, (1)
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where α = f(0) + c, and c is the average approximation error (i.e., as in final regression

estimation, the total error term will be set to average zero). In terms of the normalized

variables, the approximation becomes (upon taking into account the positive values of

x)

y ≈ α + β1g(u) + β2[g(u)]2. (2)

Again, since g is unknown, it is approximated by the second order Taylor polynomial

g(u) ≈ γ0 + γ1u+ γ2u
2, where γ0 is the average approximation error as g(0) = 0. Using

the approximation in equation (2), after rearranging terms we get

y ≈ α + β1g(u) + β2[g(u)]2

≈ θ0 + θ1u+ θ2u
2 + θ3u

3 + θ4u
4. (3)

Thus, the incremental non-linearity is obvious in order to maintain the accuracy (approx-

imately) with the initial regression. Also, equation (3) demonstrates the effect on the

intercept term, which reflects the abnormal return at u = 0 in the final regression. The

magnitude of this term may change depending on how well the approximation captures

the non-linearity in g(u).

[Figure 1]

To illustrate the normalization effect, we consider a simple case of linear func-

tion f(x) = 2 + x, such that the regression without the error term is y = 2 + x

with y = 2 at x = 0. Suppose that x has values −10,−5,−3, 0, 1, 2, 5, 10, 20 so

that the y values become −8,−3,−1, 2, 3, 4, 7, 12, 22 (i.e., values of observations with

zero error terms). Figure 1 shows the scatter plot and fitted regression lines up to a

third order of the regression of y on the Bessembinder and Zhang normalized x-values

−1,−0.67,−0.33, 0, 0.20, 0.40, 0.60, 0.80, 1 (in which the closest value to zero, here 0, has

been set to zero and the rest are transformed to their corresponding percentiles for nega-

tive and positive values separately). The figure clearly shows the effect of approximation
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error on the intercept term. Even though the linear model otherwise does not fit the

data, its intercept of 2.89 is closest to the true intercept of 2. The quadratic model

produces an alpha equal to 0.49 which underestimates the true alpha. The third order

model starts to capture the underlying non-linearity even though its alpha estimate of

0.96 is further away from the true alpha than the otherwise worse fitting linear spec-

ification. The bottom line is that, as this simple example demonstrates, incremental

non-linearity may potentially have a strong effect on alpha estimation results, which can

be even more severe if the initial model is non-linear in x.

1.2 Randomization effect

A second problem in the Bessembinder and Zhang normalization is the manner by which

it is implemented within each calendar month. For example, in SEO full regressions there

are 152,796 observations in Table 4 of Bessembinder and Zhang (2013) that are regrouped

into 369 calendar month groups of varying sizes.3 Thereafter the characteristics are

transformed across firms independently in each subgroup (calendar month) to their

within group scaled relative values from −1 to +1. It is obvious that this kind of group

wise operation is likely to have a dramatic randomization effect on the dependence

structure between the dependent variable and the explanatory variables. As an example,

suppose that a characteristic difference has in May 2004 value 5 and in June 2004 value

6 with (non-scaled) ranked values 3 and 2. That is, the May characteristic value of

5 with rank 3 was the third smallest value compared to the values of other firms in

May. Similarly the June value of 6 happened to be the second smallest compared to

other firms in June. In this situation, the initial values are ascending but the ranked

values are descending, thereby implying opposite regression effects in OLS estimation.

It is obvious that this subgroup wise normalization is likely to materially increase noise

in the regressions (factually, a sort of errors-in-variables problem). In Bessembinder

3We do not know the exact number of calendar months as it is not reported in Bessembinder and
Zhang. However, using the calendar time results in Panel E of Table 4 in their paper, we can assume
that number is about the same as that in the calendar time model, i.e., 369.
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and Zhang many characteristics are updated only once a year and in their Table 5 the

characteristic values are kept the same for the whole event period. However, this setup

does not change the situation due to regressions with pooled panel data. That is, in the

regressions the data sets are technically cross-sectional on subgroup wise normalizations

with the potential of distorting the original relative orderings of the values of each

characteristic.

Together, the likely incremental non-linearity combined with the randomization ef-

fect due to the subgroup wise implementation of the normalization tend to materially

obscure the potential regression relations and particularly affect the estimation of the

key parameter alpha. As documented in forthcoming discussion, these symptoms clearly

show up in Bessembinder and Zhang’s regression results. For example, in Table 4 of their

paper, inclusion of quadratic terms triples the alpha standard error in the IPO regression

(standard errors derived from their alpha and T -values), thereby materially hampering

the power of its T -test and increasing Type-II error. Our simulation and empirical

results confirm these findings.

1.3 Simulation study

This section utilizes simulation analyses to demonstrate the effects of incremental non-

linearity and randomization on regression intercept (alpha) estimation with cluster wise

normalization. To better understand these potential effects, we vary different conditions

in controlled experiments.

Because the Bessembinder-Zhang normalization is applied to each explanatory vari-

able, the consequences of the transformation can be expected to be more pronounced as

the number of variables increases. Also, due to normalization, the fraction of positive

(or negative) values of each explanatory variable will affect alpha estimation. Similarly,

skewness may affect the results. However, since the explanatory variables are differences

of the event and control firm characteristics, their distributions can be expected to be
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fairly symmetric. For this reason we include in our simulations only symmetric distri-

butions of the explanatory variables. Moreover, the number of clusters may have an

impact as the explanatory variables are independently normalized within each cluster,

which implies the randomization effect.

Given these considerations, our base regression is of the form

y = 1 + x1 + . . .+ xp + e, (4)

where for simplicity the intercept and regression coefficients for p explanatory variables

are set equal to one.4 As shown in Section 1.1, the non-linearity effect of normalization

is likely to be more pronounced for non-linear models. Therefore, to avoid unnecessary

complications, we utilize only linear models and assume that the explanatory variables

are generated independently.5

To focus on the main effects of normalization, we hold other things equal in different

simulation experiments. For example, R-square values are fixed in all regressions. Also,

the variances of the explanatory variables are equal in each experiment. Using this

setup, we investigate the number of explanatory variables via estimating regressions

with p = 1, 3, and 7 variables. In each case we estimate both linear and second order

models. In the second order models the numbers of explanatory variables are 2, 6, and

14. To study the effect of the fraction of positive values for explanatory variables, we

use fractions 0.70 and 0.60 that approximately match the sample values discussed later

in this study. To evaluate the effects of the generating distribution of the regressors, we

produce observations from uniform, triangular, normal, Laplace, and Student-T (with

5 degrees of freedom) distributions. As such, the distributions are ordered by kurtosis:

the uniform and triangular distributions with respective excess kurtoses of −6/5 and

4 The OLS estimator of the intercept (alpha) is a linear combination of the sample means of the
dependent and independent variables with independent variables weighted by the slope coefficients (i.e.,
equal weighting).

5 The Bessembinder and Zhang factors appear to be very low correlated. For example, for our SEO
sample in Section 2, the highest correlation is 0.17 and most are well below 0.1 in absolute value terms.
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−3/5 have lower kurtoses than the normal distribution, and the Laplace and Student

T (5) distributions with excess kurtoses of 3 and 6 have higher kurtoses. Finally, to

examine the effect of the number of clusters on the regression intercept term, we use

three groupings of 20, 50, and 100 equal-sized clusters.

Altogether, our simulations design (i.e., conditions under which data are generated) is

3×2×5×3 of (3 regressions: each with linear and quadratic specifications) × (2 positive

fractions of explanatory variable observations) × (5 distributions) × (3 groupings), or

90 dimensional. In each of 5,000 simulation rounds, we generate N = 5,000 observations

and estimate the regressions. The standard deviation of the explanatory variables are

all fixed at σx = 3, and other parameters are calibrated to satisfy the probability of

positive values (i.e, 0.70 and 0.60).

While not relevant to demonstrating the effects of the Bessembinder and Zhang nor-

malization, we introduce intra-class correlations of the observations within each cluster

and estimate cross-sectional correlation robust standard errors via the clustering method

of Cameron et al. (2011). Correlation purely inflates the standard errors independent

of the normalization effect and therefore introduces noise that masks the regression ef-

fects of interest. We account for intra-class correlations by modeling the error term e in

regression (4) using the following random component model

eit = ηt + εit, (5)

where ηt ∼ N(0, σ2
η) and εit ∼ N(0, σ2

ε ) are independent, t = 1, . . . , K with K the

number of clusters (here K = 20, 50, or 100), and i = 1, . . . , n with n = N/K the

number of observations in the equal-sized cluster (see Petersen, 2009). This procedure

implies within cluster correlation of ρe = σ2
η/(σ

2
η + σ2

ε ) in the error terms. Utilizing

equation (4) in Kolari and Pynnönen (2010), we fix the component variances of ηt and

εit in equation (5) such that inflation factor
√

1 + (n− 1)ρe of the standard error equals

2 in each cluster size when estimating a model with only the intercept term. Because our
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focus is on the intercept and not the slope coefficients of the regressors, the explanatory

variables are allowed to be independently distributed, which implies that the standard

errors of the slope coefficients are not affected by the cluster wise intra-class correlation

of the error term (see Petersen, 2009). By eliminating unrelated noise effects, this

procedure again serves the purpose of isolating the potential effects of normalization.

Appendix A.1 Table A.1 reports the alphas and their cluster robust standard errors

from the simulations. The rows alpha(x) and alpha(x, x2) report average alpha esti-

mates from 5,000 simulation samples for the linear and quadratic regressions, where the

quadratic regressions include linear and quadratic terms of the original regressors. Simi-

larly, rows alpha(u) and alpha(u, u2) report average alphas from regressions in which the

explanatory variables are replaced by their Bessembinder and Zhang (2013) normalized

transforms, with normalizations applied over the whole sample period. We include these

normalizations to measure the randomization effect of the cluster wise normalization on

the standard errors discussed in Section 1.2. Comparing these standard errors reported

in rows alpha(u; clust) and alpha(u, u2; clust) with the respective alpha(u) and alpha(u,

u2) standard errors shows the effect.

The simulation results in Table A.1 are easily summarized. Normalization tends to

bias the alpha estimates which is partially mitigated by second order terms in some

cases. The bias depends on the parent distribution of the explanatory variables and how

far the distribution is located from that of the symmetrically distributed case about zero

(as measured by the probability of positive or negative explanatory variable values). The

standard errors are relatively insensitive to the parent distribution and the number of

clusters but increase materially due to inclusion of the quadratic terms of the explanatory

variables in the normalized models as the number of explanatory variables grows. For

example, in Panel A of Table A.1 for the case of 50 clusters and one regressor that

is Student-T distributed, the average standard error of alpha(u; clust) estimated with

one explanatory variable is 0.053, and after inclusion of the quadratic term, the average

standard error increases only slightly to 0.055, or 3.8%. By contrast, in the case of
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seven explanatory variables, the average standard errors increase from 0.153 to 0.242, or

58.2%. The corresponding change in regressions with non-normalized x-variables is only

7.8% from 0.128 to 0.138. The major reason for this difference is that the second order

terms of the normalization are not able to capture the incremental non-linearity of the

transformation, thereby accumulating into the standard errors of alphas as the number of

explanatory variables grows. This effect becomes more apparent by comparing standard

errors of alphas in non-normalized and normalized regressions. In the above case of

seven explanatory variables, the standard errors increase from the non-normalized case

of 0.128 to 0.153, or 19.5%, in the linear linear regressions, and from 0.138 to 0.242, or

75.4%, thereby substantially decreasing the power of the related T -test and increasing

Type II error. Finally, the extra inflation effect on standard errors due to the cluster

wise normalization seems to remain relatively small, i.e., typically 10 to 20 percentage

points in the linear case and only 5 to 6 percentage points in the quadratic case.6

While the inflation effect on the standard errors of alpha estimates appears to be

mainly driven by the number of explanatory variables, biasing effects on alphas appear

to depend on the parent distributions and how much their locations deviate from zero.

For example, in Panel A of Table A.1 for the normal case, the linear model alphas, or

alpha(u; clust), with seven regressors range from 4.553 to 4.825 and in Panel B from 2.748

to 2.867, thus severely overestimating the true alpha of 1.0. Inclusion of the quadratic

terms reduces the bias, as Panel A alphas range from 1.497 to 1.575 and Panel B from

1.133 to 1.174. In the case of Laplace distributed explanatory variables, the situation

improves in the linear case but gets worse in the quadratic case. In Panel A the average

alphas in the linear case range from 1.492 to 1.760 compared to the quadratic case from

−0.424 to −0.362. The corresponding ranges in Panel B are from 0.947 to 1.067, i.e.,

virtually unbiased for the linear models, whereas for quadratic specifications they range

6For example, referring to the Student-T distribution with 50 clusters in Panel A of Table A.1 for
seven regressors, the standard error for alpha(x) is 0.128 versus 0.137 for alpha(u), or 7% higher, whereas
for alpha(u; clustering) it is 0.153, or 19.5% higher), such that normalizing cluster wise inflates the
standard error an additional 12.5 percentage points. Similar computations for the quadratic regressions
show a 5.8 percentage point additional inflation effect in the cluster wise normalization.
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from −0.066 to −0.040, which are severely biased. On the other hand, for Student-T dis-

tributed explanatory variables the results in Panel A indicate that the linear specification

produces positive biases in alphas ranging from 1.280 to 3.233, whereas the quadratic

specification produces increasingly downward biased alphas ranging from 0.961 down to

0.670 with the number of explanatory variables. Similar results are obtained in Panel B

of Table A.1.

Overall, normalization increases the standard errors of the alpha estimates and can

cause unpredictable biasing effects depending on the distributional properties of the

explanatory variables. Inflated standard errors are mainly due to the incremental non-

linearity of the normalization, which in most cases is not adequately captured by in-

clusion of second order terms of the normalized variables. With the exception that the

randomization effect is less pronounced than expected, these results corroborate earlier

theoretical discussion in the section. We next empirically demonstrate these concerns by

revisiting the Bessembinder and Zhang (2013) study with sample data closely matching

theirs.

2 Data and methodology

In this section we overview sample selection and the Bessembinder and Zhang regression.

The sample selection aims to match that of Bessembinder and Zhang (2013) as closely

as possible covering events in the period from 1980 to 2005 with the last 5-year post

event return period ending 2010.

2.1 Sample selection

The M&A sample consists of completed U.S. mergers and acquisitions in the Thomson

ONE (SDC) database between 1980 and 2005 with transactions value of $5 million or

more. Following Betton et al. (2008), we apply two filters: (1) the acquisition takes

the form of a merger (M), majority interest (AM), remaining interest (AR), or partial
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interest (AP); and (2) the acquisition is a control bid wherein the acquirer owns at least

50% of the target after the deal. Also, we require that the relative size of the deal (viz.,

transaction size divided by the market value of the acquirer) to be greater than 5% to

eliminate small deals. In total, we have 4,169 acquisitions.

We select a control firm for each firm by matching size and book-to-market ratio

(BM) characteristics on CRSP and Compustat. Following Eckbo et al. (2007) and

Bessembinder and Zhang (2013), for each M&A deal completion, matched firms have

closest BM among firms with firm size between 70% and 130% of the bidder firm. We

eliminate matching firms that are in our sample of bidders within five years before the

event date.

Firm size (market capitalization) is calculated at the end of December prior to the

M&A deal completion date. BM is the ratio of book equity to market equity at the end of

year t− 1. Following Fama and French (1993), book equity is defined as the Compustat

book value of stockholders equity, plus balance sheet deferred taxes and investment tax

credits (if available), minus the book value of preferred stock. Depending on availability,

the redemption, liquidation, or par value (in that order) is used to estimate the value of

preferred stock.

Table 1 shows the distribution of acquisitions in our sample period. Before 1994 the

number of transactions ranged from only 1 in 1982 to 179 in 1993. Transactions peaked

in the period 1996–2000 ranging from 297 to 371. Subsequently, the number of deals

declined to a low of 146 in 2002 and then climbed to 198 in 2005.

[Table 1]

The SEO sample consists of completed U.S. SEOs in the Thomson ONE (SDC)

database between 1980 and 2005, excluding American Depository Receipts, Global De-

pository Receipts, and unit offerings. Financial and utility firms are excluded also. The

procedure for selecting matching firms is similar to the M&A sample. There are 5,226

SEO events. Table 1 shows the distribution of the SEOs over time.

The IPO sample includes all completed U.S. initial public offerings (IPOs) in the
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Thomson ONE (SDC) database between 1980 and 2005, excluding Real Estate Invest-

ment Trusts, closed-end funds, American Depository Receipts, unit trust offerings and

units.7 We select matching firms among the firms having CRSP data using market capi-

talization. Following Loughran and Ritter (2000), for each IPO event, the matched firm

has the closest but greater market capitalization at the end of December following the

IPO. Matching firms must have been publicly traded for more than 5 years. There are

7,347 IPO events. Table 1 shows that the number of IPOs increased in the 1990s and

thereafter generally declined.8

The dividend initiations (DIV) sample includes cash dividend initiations in the CRSP

database between 1980 and 2005. Following Boehme and Sorescu (2002) and Bessem-

binder and Zhang (2013), we apply the criteria that common stocks are listed on the

NYSE, NYSE MKT (AMEX), or NASDAQ (viz., share code 10 or 11 and exchange code

1, 2 or 3), stocks have been included in the CRSP for more than two years, dividends are

ordinary cash (U.S. dollars), and they are paid regularly9. We apply the same matching

procedures as for M&A and SEO samples. There are 882 dividend initiations ranging

from 12 in 1980 to 115 in 2003.

We recognize that the numbers of event firms for different corporate actions in our

paper differ to some degree from those of Bessembinder and Zhang (2013). Our sample

sizes for SEOs, M&As, and dividend initiations are quite similar to theirs (i.e., 5,226 firms

here versus 5,131 firms, 4,169 firms here versus 3,972 firms, and 882 firms here versus 887

firms, respectively). A nominal difference occurs for IPOs, for which Bessembinder and

Zhang have 8,966 firms compared to 7,347 cases here, both of which are large samples.10

Finally, because 103 M&As, 141 SEOs, and 9 DIVs miss all event period returns, in

7Unit IPOs are bundles of common stocks and warrants Schultz (1993). There are no material
changes in our conclusions if we include units. There are 738 units between 1980 and 2005. We also
excluded stocks that began trading on CRSP at dates far distant from the indicated IPO dates from
SDC (60 days).

8Both Doidge et al. (2013) and Gao et al. (2013) document a decline of IPOs after 2000 also.
9The frequency of dividends is monthly, quarterly, semiannual, annual, or unspecified (viz., third

digit of distribution code is 1, 2, 3, 4 or 5). As noted by Boehme and Sorescu (2002), unspecified
frequencies are mostly quarterly.

10In addition to our sample, we used the original sample from Bessembinder and Zhang (2013) also.
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subsequent analyses the maximum number of events for these cases are 4,066, 5,085,

and 873, respectively.

2.2 Bessembinder and Zhang model

Bessembinder and Zhang (2013) contend that the BHAR matched control firm procedure

does not fully control firm differences that can affect long-run abnormal returns. They

point out that the continuously compounded abnormal return between an event and

matched control firm, or CCARit = log(1+Rit)− log(1+Rc
it), in which Rit and Rc

it are the

simple returns of the event and matched control firm, respectively, corresponds to a log

wealth relative as defined by Loughran and Ritter (1995).11 In an effort to better control

for differences between the event firms and their matches in testing long-run abnormal

returns, the authors specify regression model

CCARit = α + β1∆betait + β2∆sizeit + β3∆BMit (6)

+β4∆momit + β5∆illiqit + β6∆isvit + β7∆invit + eit,

where ∆ denotes the monthly difference between event firm and matching firm char-

acteristics, beta for July of year t to June of year t + 1 is estimated from the market

model using monthly stock returns during years t − 5 to t − 1,12 size is the market

11The authors argue that testing for zero CCAR is equivalent to testing zero BHAR or unity of the
wealth ratio. However, this claim may not hold. BHAR leads to portfolio testing as simple returns
aggregate to portfolios, whereas it is well known that log-returns do not aggregate to portfolio returns.
In this regard, Barber and Lyon (1997, Sec. 2.3) do not recommend the use of continuously compounded
returns for analyzing long-run return performance. In this respect, we agree with Bessembinder and
Zhang that log-returns are useful in assessing long-run return performance due to their more attractive
statistical properties, which lead to more reliable tools for detecting potential event implied changes
in the return generating process. Subsequently, economic consequences can be evaluated with relevant
return measures and portfolio strategy arguments.

12 For each stock it is required that there are a minimum of 12 months of returns (according to
personal communication with Bessembinder and Zhang). Because IPOs do not have pre-event returns,
this restriction results in a loss of 18 to 29 or more months from the beginning of the event period. A
minimum of 18 months are lost if January of year t− 1 is the event month. In the other extreme, 29 or
more months are lost if the first available monthly return is in February (i.e., if this is also the event
month and all subsequent returns are available, 29 months are lost, otherwise more). In this case the
23 months in years t− 2 and t− 1 are used to compute the beta for July of year t to June of year t+ 1.
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equity at the end of the latest June, BM for July of year t to June of year t + 1 is the

book value of the common equity to the market value of common equity at the end

of fiscal year t − 1, mom is momentum computed using cumulative returns for months

−12 to −2, illiq is illiquidity in July of year t to June of year t + 1 proxied by the

average ratio of daily absolute stock return to dollar trading volume from July of year

t− 1 to June of year t (see Amihud, 2002),13 isv is idiosyncratic volatility as measured

by the annualized standard deviation of the residuals obtained in a Fama and French

three-factor regression using daily returns in month −2, and inv is capital investment in

July of year t to June of year t+ 1 based on the annual change in gross property, plant,

and equipment in fiscal year t divided by assets at the beginning of fiscal year t. As

discussed in Section 1, in an effort to make estimated slope coefficients in regression (6)

comparable, Bessembinder and Zhang normalize the characteristic differences by their

monthly cross-sectional procedure to positive and negative percentile ranks that range

from −1 to +1.

3 Empirical results

Tables 2 and 3 report the estimated regression coefficients based on equation (6) with

normalized factors. In the bottom portion of these tables, F -tests of the joint significance

of the squared terms are shown, in addition to mean CCARs (i.e., inital alphas from

regressions without factors) and their cross-sectional correlation adjusted T -values. The

analyses include all stocks for which regressors and returns are available for the 60-

month holding period or the month of delisting, whichever occurred first. Thus, these

results reflect average monthly abnormal returns for firms surviving up to 60 months.

Tables 4 and 5 replicate regressions in Tables 2 and 3 with non-normalized factors. The

13Following Amihud (2002), average market illiquidity in the denominator is calculated using illiq-
uidity of all stocks satisfying the following conditions: (1) the stock has return and volume data for
more than 200 days (from July of year t − 1 to June of year t), (2) the stock price is greater than $5,
(3) the stock has data on market capitalization available, and (4) illiquidity outliers are eliminated at
the highest or lowest 1%.
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reported regression slope coefficients are, however, scaled by standard deviations of the

corresponding factors to make the coefficients comparable. Unlike Bessembinder and

Zhang’s normalization, our procedure does not affect alphas, goodness-of-fit statistics

of the regressions, nor relative magnitudes of factor values. Thus, the scaling is purely

technical with the purpose of putting the slope coefficients on equal footing, such that

each of them reflects the return effect of a one standard deviation change in the respective

characteristic difference.

[Tables 2 and 3]

Figures 2 to 5 plot firm characteristics used in the regressions. Pre- and post-event

median values of the characteristics are shown for the event and matching control firms.14

These figures are consistent with those of Bessembinder and Zhang (2013, Figures 1–

4) and confirm their observation that event firms tend to differ from their matches in

terms of these characteristics, thereby motivating them to investigate whether potential

abnormal returns are explained by these differences.

[Figures 2, 4, 3, and 5]

Regarding M&As in Figure 2, the most obvious differences between event and match-

ing control firms among regressor factors are investment activity around the event month

as well as disparities in size and book-to-market values after the event month. Given

the nature of the the event, these differences are expected. Focusing initially on the

linear and second order models in Table 2 for M&As comparable to those reported in

Bessembinder and Zhang (2013, Panel C of Table 4), it is notable that in our case the

second order (i.e., squared) terms are neither individually nor jointly significant. In their

study, the squared term of beta is significant at the 5% level, and the squared term of the

idiosyncratic volatility is borderline significant at the 10% level. In our case inclusion of

these terms inflates the standard error of alpha from 0.097 to 0.233 in Table 2 or 140%.

In their regression results the standard error is inflated by 90%. However, unlike their re-

sults, our regressions indicate insignificant alphas even without the squared terms. The

14Since pre-event values are not available in the IPO sample, Figure 4 shows only post-event values.
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mean CCAR in the regression sample panel of Table 2 corresponds to alpha without

any regressors, i.e., model CCAR = α + e. This alpha estimate is significant at the 5%

level. The mean CCAR results in the full sample panel contain all available observations

and correspond to the alpha result in Column 1 of Table 4’s Panel C in Bessembinder

and Zhang. Even though we did our best to match our sample to theirs, our results

in the full sample panel of Table 2 indicate insignificant alpha (and even BHARs indi-

cate insignificant abnormal returns), whereas Bessembinder and Zhang’s alpha is highly

significant.

It is true that in their case the alpha estimates decrease with the addition of squared

terms to the linear model. However, as discussed in Section 1.1 and demonstrated by

Figure 1, non-linearity caused by normalization likely requires higher order terms to

adequately capture the implied extra non-linearity. Indeed, enhancing in our case the

M&A regression model with third powers of the explanatory variables reveals that third

order terms are jointly the only significant factors in the regression (i.e., the F -test

p value is 0.020 in Table 2). Among the individual coefficients, there are only two

significant regressors: the borderline significant first order term of momentum and the

third order term of idiosyncratic volatility. As noted above, even though alphas are

insignificant in each specification and thus differ from those of Bessembinder and Zhang,

the inflation effect on standard errors is similar to their results. In view of the ongoing

controversy in the literature discussed in the introduction, these conflicting results on the

significance of alphas or BHARs suggest that further methodological research is needed

to better understand ambiguous long-run abnormal return results.

The SEO columns in Table 2 provide CCAR regression results. Unlike other corpo-

rate events, estimated alphas are insignificant in both samples with or without squared

terms. Again the squared terms of the normalized factors are jointly insignificant. These

results for the linear and squared term regressions are consistent with those in Bessem-

binder and Zhang. Inclusion of third order terms does not change the significance of

the alpha estimate. However, the standard error of alpha estimates become strongly
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inflated by almost doubling in the non-linear models compared to the linear model.

Finally, consistent with our discussion in Section 1.1, third order terms are highly signif-

icant. With these terms, the magnitude of alpha increases substantially relative to the

linear model and becomes economically significant with an abnormal return of −0.259

percentage points per month or approximately −3.1 percentage points per year. How-

ever, due to inflated standard errors, it is still far from being statistically significant at

any conventional level.

Table 3 reports the IPO regression results. In the full sample the average BHAR

of −28.4 percentage points is highly significant. In the regression sample the BHAR

is considerably smaller at −7.1 percentage points but still significant at the 5% level.

Consistent with Bessembinder and Zhang (2013, Panel B of Table 4), alpha is highly

significant in the linear regression of CCARs on the characteristic differences. Similar to

Bessembinder and Zhang, the significance of alpha drops dramatically after inclusion of

the squared terms. In their case the alpha estimate becomes statistically insignificant.

In our case, even though there is little change in alpha from −0.547 in the linear case to

−0.495 in the quadratic regression, the T -value drops substantially from highly signifi-

cant at −3.71 to barely 10% significant at −1.87. The reason for the drop in significance

is the 80.3% inflated standard error in the quadratic regression. Inclusion of the third

order terms does not change the situation. It is notable that in all specifications alphas

are economically highly significant even at the lowest estimate of −0.495 percentage

points per month (i.e., −5.94 percentage points per year or −29.7 percentage points in

5-years). Finally, similar to M&As and SEOs, the table shows that the second order

terms are jointly statistically insignificant, whereas the linear and third order terms are

highly significant.

It turns out that the weak significance of alpha in the quadratic regression with

Bessembinder and Zhang normalized characteristics in Table 3 can be attributed to

the large number of lost months from the beginning of the event period due to the

way beta is estimated (see footnote 12). Since beta is not statistically significant, we
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dropped it and its squared term from the equations. Results are reported in Table A.2

in Appendix A.2. The number of months increases from 108,005 in Table 3 to 151,944

in Table A.2. Also, the number of firms increases from 3,877 in Table 3 to 4,616 in

Table A.2. More importantly, as seen from the first three columns of Table A.2, alphas

become both economically and statistically highly significant in all specifications with

the Bessembinder and Zhang normalized regressors. To confirm the lost-months effect,

we estimated betas (similar to idiosyncratic volatility) from daily returns in month t−2,

which avoids losing observations due to beta. Table A.3 reports the results that in

terms of alpha are virtually identical to those in Table A.2, i.e., highly economically

and statistically significant alphas in all specifications. To further illustrate the lost-

months effect, Table A.4 in Appendix A.2 repeats Table A.3 for the months available in

Table 3 of the main text. Again, similar to Table 3, alpha in the quadratic regression

with Bessembinder and Zhang normalized regressors loses its significance by becoming

as in Table 3 only weakly significant at the 10% level with T -value −1.71. We infer

that dropping 18 to 29 months of post-IPO returns due to the Bessembinder and Zhang

approach to beta estimation omitted a considerable amount of the market reaction to

IPOs. Adding back most of these months results in significant abnormal returns even

with their normalized characteristic differences.

The situation is quite different with the non-normalized characteristics differences as

regressors. Whichever the specification, alphas are highly economically and statistically

significant (see the first three columns in Table 5 as well as the last three columns

in Tables A.2, A.3, and A.4). Thus, even exclusion of a substantial number of event

period months from the beginning of the period does not eliminate alpha. Altogether,

these empirical results strongly suggest that the issues related to the Bessembinder

and Zhang normalization tend to produce outcomes for alphas that are highly sample

specific, while results from the models with non-normalized characteristics are far more

consistent.15 On the basis of these findings, we do not find any reliable empirical evidence

15Our results are robust if we include units in our sample or if we use Bessembinder and Zhang (2013)

20



that firm characteristic differences would explain IPO post-event underperformance.

Instead, our IPO findings support those of many earlier studies that have documented

material underperformance of IPOs (for example, see Betton et al., 2008, among others).

In contradiction to Bessembinder and Zhang (2013), our further analyses suggest that

outcomes from the regression method with normalized factors may be highly sample

specific, thereby hampering the reliability of inferences.

Results for dividend initiations (DIVs) in the last three columns of Table 3 are

similar to those for M&As and SEOs, with the exception that in the enhanced models

both second and third order terms are jointly significant. Interestingly, estimated alphas

in the second and third order models are economically large and negative but far from

statistical significance (viz., −0.444 and −0.378 percentage points per month with T -

values of −1.24 and −1.04, respectively). The addition of higher order terms at worst

almost triples the standard errors of alphas rendering them insignificant even in a case

with an economically significant estimate of −0.444 percentage points per month, or

about −5.3 percentage points per year.

Due to problems of cross-sectional normalization of explanatory variables in panel

data analyses, we repeat the regression analyses using non-normalized factors. As shown

in Tables 4 and 5, particularly with respect to the inclusion of squared terms, the results

are quite different from those with normalized factors. Regardless of whether or not sec-

ond order terms are included, with the exception of DIVs, all estimated alphas are highly

significant. Notably, the standard errors of alphas remain virtually unchanged across

different model choices. The SEO results are interesting, as controlling for characteristic

differences causes alpha to become both economically and statistically more significant.

This result implies that, while the average returns of the event firms and their matches

do not differ discernibly in terms of BHARs, after controlling for various firm character-

istics, they tend to differ. The return averages without the controls reflect unconditional

mean behavior. Regressions with controls indicate conditional average return behavior

original sample. Additional tables are available upon request.
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after accounting for the characteristics. As such, an insignificant unconditional alpha

suggests that confounding effects mask the event effect which becomes revealed after

conditioning with the characteristic differences. In sum, controlling for important fac-

tors like those identified by Bessembinder and Zhang (2013) may reveal hidden event

effects instead of explaining them away. The conflicting results documented here show

that further research is needed to develop best practices for utilizing various firm and

other characteristics as controls in CCAR regressions.

[Tables 4 and 5]

4 Conclusions

This paper addressed problems of transforming independent variables in regressions to

their percentile ranks by means of subgroup wise normalization. Recent work by Bessem-

binder and Zhang (2013) applied this type of normalization to help explain observed

return differences between event and control firms around major corporate events. We

showed that normalization tends to increase non-linearity in the regression and, if the

transformation is implemented subgroup wise, the regression relations tend to become

randomized. In combination, these effects can blur regression results and render even

economically large unexplained return differences (alphas) statistically insignificant.

We demonstrated these econometric problems using both simulation experiments and

empirical analyses that replicate the Bessembinder and Zhang study with similar data

and regression methods. Simulations confirmed the inflation effects on the standard

errors of alphas and indicated that the resulting alphas themselves may be biased de-

pending on the distributions of the original explanatory variables. Empirical replications

of their analyses for mergers and acquisitions (M&As), initial public offerings (IPOs),

seasoned public offerings (SEOs), and dividend initiations (DIVs) confirmed our main

concerns. The normalization of firm characteristics dramatically decreased the precision

of estimating the key parameter alpha. The instability of estimating alpha using normal-
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ized characteristics was evident when the results were compared to those using original

characteristics. In most of the empirical replications with normalized characteristics,

the squared characteristics in the enhanced models similar to Bessembinder and Zhang

were not statistically significant, and the standard errors of alphas with the normalized

characteristics became highly inflated after the inclusion of squared terms. The latter

inflation problem did not occur when the original characteristics were used, such that

most of the alphas remained highly statistically significant with squared terms.

In conclusion, we found little reliable support for explaining long-run abnormal re-

turns with firm characteristics. In spite of these drawbacks, we believe that regression

approaches can be helpful in characterizing long-run return patterns after major cor-

porate events. Further research is recommended to identify reliable factors and best

practices to capture risk adjustment in abnormal returns and thereby gain a better

understanding of long-run stock return patterns.
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Year M&A SEO IPO DIV

1980 5 116 93 29
1981 9 129 239 24
1982 1 148 85 12
1983 2 348 529 18
1984 27 97 230 25
1985 97 137 241 21
1986 110 201 504 25
1987 121 152 353 27
1988 94 71 140 47
1989 107 99 120 47
1990 71 99 121 39
1991 101 201 283 27
1992 141 197 395 29
1993 179 253 503 29
1994 246 214 393 42
1995 313 283 446 56
1996 310 332 663 23
1997 368 305 445 25
1998 371 214 283 13
1999 294 215 447 26
2000 297 241 327 13
2001 206 233 69 16
2002 146 211 63 27
2003 175 227 66 115
2004 180 290 161 76
2005 198 213 148 51

Total 4,169 5,226 7,347 882

Table 1: Number of M&As, SEOs, IPOs, and dividend initiations (DIV) in different
years.

Description: The M&A sample consists of completed U.S. mergers and acquisitions in the Thomson

ONE (SDC) database with transaction values of $5 million or more. Acquisitions must take the form

of a merger (SDC deal form M), acquisition of majority interest (AM), acquisition of remaining interest

(AR), or acquisition of partial interest (AP). The acquisition must be a control bid, in which the acquirer

owns at least 50% of the target after the deal. The relative size of the deal (transaction size divided

by the market value of the bidder firm before the completion) must be greater than 5%. The IPO

sample excludes Real Estate Investment Trusts, closed-end funds, American Depository Receipts, unit

trust offerings and units. The SEO sample excludes American Depository Receipts, Global Depository

Receipts, unit offerings, and financial and utility firms. Lastly, the dividend initiations (DIV) sample

includes common stocks listed on the NYSE, NYSE MKT (AMEX), or NASDAQ with CRSP data

available for more than two years. Dividends are ordinary cash in dollars that are paid regularly.
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M&A SEO
Linear 2nd order 3rd order Linear 2nd order 3rd order

∆beta −0.216 −0.199 0.098 −0.206 −0.213 0.204
(−0.77) (−0.72) (0.34) (−0.97) (−1.01) (0.73)

(∆beta)2 −0.407 −0.390 0.106 0.156
(−1.54) (−1.52) (0.50) (0.73)

(∆beta)3 −0.521 −0.719
(−0.98) (−1.60)

∆size −0.126 −0.129 −0.301 0.068 0.096 −0.064
(−0.66) (−0.67) (−0.73) (0.45) (0.63) (−0.20)

(∆size)2 −0.300 −0.330 −0.254 −0.250
(−1.07) (−1.17) (−1.08) (−1.05)

(∆size)3 0.181 0.182
(0.34) (0.46)

∆BM 0.040 0.028 −0.081 0.158 0.147 0.240
(0.26) (0.18) (−0.26) (1.15) (1.08) (0.96)

(∆BM)2 0.351 0.364 0.454b 0.443b

(1.46) (1.52) (2.03) (1.98)
(∆BM)3 0.140 −0.185

(0.28) (−0.45)
∆mom 1.255c 1.265c 0.855b 0.855c 0.866c 0.611b

(3.38) (3.40) (2.09) (3.79) (3.69) (2.08)
(∆mom)2 −0.181 −0.181 0.236 0.261

(−0.78) (−0.78) (0.73) (0.79)
(∆mom)3 0.599 0.401

(1.05) (0.73)
∆illiq 0.733c 0.740c 0.398 0.600c 0.623c 0.323

(3.72) (3.75) (0.94) (3.82) (3.98) (1.11)
(∆illiq)2 −0.183 −0.154 −0.239 −0.180

(−0.54) (−0.46) (−0.81) (−0.61)
(∆illiq)3 0.605 0.537

(0.96) (1.20)
∆isv −1.484c −1.478c −0.085 −1.689c −1.706c −0.837c

(−4.51) (−4.49) (−0.24) (−6.36) (−6.74) (−2.87)
(∆isv)2 −0.074 −0.026 −0.038 0.001

(−0.24) (−0.08) (−0.16) (0.00)
(∆isv)3 −2.392c −1.516c

(−3.52) (−3.22)
∆inv 0.088 0.103 0.131 0.295b 0.306b 0.211

(0.49) (0.57) (0.41) (2.04) (2.10) (0.88)
(∆inv)2 0.028 0.049 0.010 −0.003

(0.11) (0.19) (0.05) (−0.02)
(∆inv)3 −0.123 0.113

(−0.24) (0.30)
α̂ −0.102 0.164 0.134 −0.116 −0.211 −0.259

(−1.05) (0.71) (0.57) (−1.19) (−1.17) (−1.43)
Std. error (α̂) [0.097] [0.233] [0.235] [0.098] [0.180] [0.182]

Adjusted R2 0.003 0.003 0.004 0.003 0.003 0.003
F for linear terms 6.78 6.66 1.05 11.29 11.55 2.17
p-value 0.000 0.000 0.396 0.000 0.000 0.036
F for 2nd order terms 0.83 0.87 0.80 0.85
p-value 0.566 0.534 0.590 0.550
F for 3rd order terms 2.41 2.34
p-value 0.020 0.024

Samples Samples
Regression Full Regression Full

Mean(CCAR) −0.247b −0.091 −0.188a −0.215a

T -value −2.28 −1.12 −1.77 −1.88
Std. Error (mean) 0.109 0.081 0.106 0.115
BHAR −0.041 −1.432 −0.811 −4.309
t-bhar 0.00 −0.25 −0.20 −1.23
N clusters 365 371 372 372
N months 99,769 171,935 164,255 221,840
N firms 2,604 4,066 4,205 5,085

Table 2: Normalized firm characteristics and long-run abnormal returns for M&As and
SEOs.
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Description: The table presents OLS regressions of monthly continuously compounded ab-

normal returns (CCARs) for M&As and SEOs based on normalized differences of firm and

market characteristics specified by Bessembinder and Zhang (2013). The length of the event

period for each stock is up to 60 months or the time of delisting, whichever comes first. The

T -ratios of the regression coefficients are in parentheses, and standard errors of alphas are in

brackets. The middle portion of the table reports F -statistics and their p-values separately for

the joint significance of the linear, squared, and cubic terms in the regressions. The bottom

portion reports mean CCARs and their T -values as well as number of clusters over which the

cross-sectional correlation robust standard errors by Cameron et al. (2011) (see also Petersen,

2009) are computed. All the T -values, standard errors of alphas, and F -values in the table

are based on these cross-sectional correlation robust standard error computations. The mean

CCARs should be interpreted as the average monthly abnormal returns for stocks with event

periods up to 60 months rather than 5-year average monthly abnormal returns. It is notable

that the number of clusters (N clusters) reported in the bottom portion is the effective num-

ber of observations for inferences instead of the considerably higher number of months (N

months) or number of firms (N firms) reported in the last two rows at the bottom. Similar

to Bessembinder and Zhang (2013), it is notable that the number of firms in the regression

samples are considerably smaller than in the full samples due to limited data availability for

the explanatory variables. Superscripts represent significance levels for two-tailed T -tests as

follows: a = 0.10, b = 0.05, and c = 0.01.

Interpretation: In order to capture alpha (the abnormal return), inclusion of higher or-

der terms of the normalized characteristics in the CCAR regression considerably inflate the

standard errors of alpha, thereby rendering even economically meaningful alphas statistically

insignificant.
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IPO DIV
Linear 2nd order 3rd order Linear 2nd order 3rd order

∆beta −0.302 −0.292 0.017 −0.332 −0.245 0.574
(−0.97) (−1.00) (0.05) (−1.32) (−0.97) (1.21)

(∆beta)2 0.136 0.180 0.607 0.562
(0.46) (0.61) (1.59) (1.47)

(∆beta)3 −0.518 −1.459a

(−0.91) (−1.92)
∆size −0.101 −0.079 −0.026 0.129 0.138 −0.189

(−0.43) (−0.34) (−0.06) (0.59) (0.63) (−0.38)
(∆size)2 −0.123 −0.125 −0.193 −0.255

(−0.46) (−0.48) (−0.47) (−0.61)
(∆size)3 −0.116 0.360

(−0.20) (0.55)
∆BM 0.701c 0.678c 1.136c 0.302 0.314 0.630

(3.48) (3.35) (3.53) (1.29) (1.35) (1.29)
(∆BM)2 −0.388 −0.469a −0.493 −0.443

(−1.48) (−1.74) (−1.14) (−1.02)
(∆BM)3 −0.770a −0.582

(−1.69) (−0.76)
∆mom 0.979c 1.003c 1.422c 1.291c 1.294c 1.012b

(2.99) (2.98) (3.37) (5.52) (5.38) (2.03)
(∆mom)2 −0.086 −0.025 −0.609 −0.626

(−0.23) (−0.07) (−1.35) (−1.35)
(∆mom)3 −0.733 0.470

(−1.33) (0.56)
∆illiq 0.724c 0.686c 0.317 0.518a 0.461a −0.222

(2.87) (2.79) (0.75) (1.96) (1.74) (−0.38)
(∆illiq)2 0.591a 0.577a 1.515c 1.493c

(1.72) (1.70) (2.78) (2.74)
(∆illiq)3 0.713 1.201

(1.20) (1.26)
∆isv −1.781c −1.770c −0.659 −0.850c −0.717b 0.831

(−5.03) (−5.10) (−1.33) (−2.95) (−2.50) (1.64)
(∆isv)2 0.057 0.287 −0.086 −0.161

(0.19) (0.88) (−0.19) (−0.35)
(∆isv)3 −1.946c −2.650c

(−2.86) (−3.26)
∆inv 0.410b 0.419b 0.302 0.431b 0.443b 0.012

(2.03) (2.08) (0.93) (1.97) (2.04) (0.02)
(∆inv)2 −0.343 −0.347 0.519 0.515

(−1.15) (−1.16) (1.30) (1.28)
(∆inv)3 0.156 0.642

(0.32) (0.83)
α̂ −0.547c −0.495a −0.590b −0.059 −0.439 −0.376

(−3.71) (−1.87) (−2.20) (−0.45) (−1.23) (−1.04)
Std. error (α̂) [0.147] [0.265] [0.268] [0.132] [0.357] [0.362]

Adjusted R2 0.003 0.003 0.003 0.003 0.004 0.004
F for linear terms 8.02 7.73 3.72 6.96 6.33 1.63
p-value 0.000 0.000 0.001 0.000 0.000 0.126
F for 2nd order terms 0.99 1.27 3.17 3.14
p-value 0.437 0.262 0.003 0.003
F for 3rd order terms 2.23 2.61
p-value 0.032 0.012

Samples Samples
Regression Full Regression Full

Mean(CCAR) −0.936c −1.384c 0.111 0.174a

T -value −4.27 −5.33 0.88 1.65
Std. Error (mean) 0.219 0.260 0.126 0.105
BHAR −7.092b −28.374c 7.015 12.629
t-bhar −1.97 −6.50 0.75 1.36
N clusters 342 371 370 372
N months 108,005 316,148 25,085 38,001
N firms 3,877 7,347 620 873

Table 3: Normalized firm characteristics and long-run abnormal returns for IPOs and
DIVs.
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Description: The table presents OLS regressions of monthly continuously compounded abnor-

mal returns (CCARs) for IPOs and dividend initiations (DIVs) based on normalized differences

of firm and market characteristics specified by Bessembinder and Zhang (2013). The length of

the event period for each stock is up to 60 months or the time of delisting, whichever comes

first. The T -ratios of the regression coefficients are in parentheses, and standard errors of

alphas are in brackets. The middle portion of the table reports F -statistics and their p-values

separately for the joint significance of the linear, squared, and cubic terms in the regressions.

The bottom portion reports mean CCARs and their T -values as well as number of clusters

over which the cross-sectional correlation robust standard errors by Cameron et al. (2011) (see

also Petersen, 2009) are computed. All the T -values, standard errors of alphas, and F -values

in the table are based on these cross-sectional correlation robust standard error computations.

The mean CCARs should be interpreted as the average monthly abnormal returns for stocks

with event periods up to 60 months rather than 5-year average monthly abnormal returns. It is

notable that the number of clusters (N clusters) reported in the bottom portion is the effective

number of observations for inferences instead of the considerably higher number of months (N

months) or number of firms (N firms) reported in the last two rows at the bottom. Similar

to Bessembinder and Zhang (2013), it is notable that the number of firms in the regression

samples are considerably smaller than in the full samples due to limited data availability for

the explanatory variables. Superscripts represent significance levels for two-tailed T -tests as

follows: a = 0.10, b = 0.05, and c = 0.01.

Interpretation: In order to capture alpha (the abnormal return), inclusion of higher or-

der terms of the normalized characteristics in the CCAR regression considerably inflate the

standard errors of alpha, thereby rendering even economically meaningful alphas statistically

insignificant.
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M&A SEO
Linear 2nd order 3rd order Linear 2nd order 3rd order

∆beta −0.287a −0.257 −0.301 −0.262b −0.267b −0.244
(−1.72) (−1.49) (−1.63) (−1.97) (−2.00) (−1.62)

(∆beta)2 −0.014 −0.056b −0.023 −0.023
(−0.84) (−2.02) (−1.01) (−1.04)

(∆beta)3 0.004a 0.000
(1.87) (−0.05)

∆size −0.084 −0.068 −0.081 −0.066 −0.070 −0.092
(−1.31) (−1.12) (−1.02) (−1.22) (−1.29) (−1.01)

(∆size)2 −0.003a −0.004 0.000 0.000
(−1.68) (−1.41) (0.39) (0.32)

(∆size)3 0.000 0.000
(0.28) (0.39)

∆BM 0.100 0.153 0.132 0.015 −0.010 −0.001
(0.84) (0.70) (0.58) (0.18) (−0.12) (−0.01)

(∆BM)2 −0.001 0.001 0.002 0.008
(−0.34) (0.06) (0.84) (1.21)

(∆BM)3 0.000 0.000
(−0.11) (−0.78)

∆mom 0.436a 0.410a 0.485a 0.382b 0.557c 0.618c

(1.81) (1.66) (1.85) (2.02) (2.58) (2.67)
(∆mom)2 0.008 0.028c −0.027b −0.054

(0.91) (2.85) (−2.30) (−1.60)
(∆mom)3 −0.001b 0.001

(−2.51) (1.18)
∆illiq 0.256 0.785c 0.779c 0.335a 0.384 0.489b

(1.16) (2.64) (2.62) (1.80) (1.61) (1.98)
(∆illiq)2 −0.020b −0.029 0.003 −0.040

(−2.26) (−0.81) (0.27) (−1.59)
(∆illiq)3 0.000 −0.002b

(0.29) (−2.04)
∆isv −0.956c −1.012c −1.030c −0.966c −0.961c −1.091c

(−3.66) (−3.64) (−3.77) (−4.53) (−4.59) (−5.02)
(∆isv)2 0.008 −0.014 0.012 −0.012

(1.28) (−0.62) (1.02) (−1.36)
(∆isv)3 0.000 0.001c

(1.19) (4.29)
∆inv 0.023 0.039 −0.023 0.097 0.080 0.165a

(0.23) (0.35) (−0.17) (1.06) (0.89) (1.69)
(∆inv)2 −0.002 −0.004 0.001 0.023b

(−0.17) (−0.49) (0.19) (2.57)
(∆inv)3 0.001 −0.001b

(1.15) (−2.32)
α̂ −0.198b −0.188a −0.132 −0.237b −0.237b −0.237b

(−2.00) (−1.89) (−1.40) (−2.31) (−2.36) (−2.34)
Std. error (α̂) [0.099] [0.099] [0.094] [0.102] [0.101] [0.101]

Adjusted R2 0.003 0.003 0.003 0.002 0.002 0.003
F for linear terms 2.88 2.98 3.21 5.01 5.32 5.70
p-value 0.006 0.005 0.003 0.000 0.000 0.000
F for 2nd order terms 1.43 2.16 1.23 2.02
p-value 0.193 0.037 0.285 0.052
F for 3rd order terms 1.73 4.03
p-value 0.101 0.000

Samples Samples
Regression Full Regression Full

Mean(CCAR) −0.247b −0.091 −0.188a −0.215a

T -value −2.28 −1.12 −1.77 −1.88
Std. Error (mean) 0.109 0.081 0.106 0.115
BHAR −0.041 −1.432 −0.811 −4.309
t-bhar 0.00 −0.25 −0.20 −1.23
N clusters 365 371 372 372
N months 99,769 171,935 164,255 221,840
N firms 2,604 4,066 4,205 5,085

Table 4: Non-normalized firm characteristics and long-run abnormal returns for M&As
and SEOs.
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Description: The table presents OLS regressions of monthly continuously compounded ab-

normal returns (CCARs) for M&As and SEOs based on differences of firm and market charac-

teristics specified by Bessembinder and Zhang (2013). Unlike Table 2 above as well as Table 4

in Bessembinder and Zhang, original non-normalized values of the factors are used. For com-

parability purposes, slope coefficients in the table are scaled by standard deviations of the

factors. As in Table 2, the length of the event period for each stock is up to 60 months or the

time of delisting, whichever comes first. The T -ratios of the regression coefficients are in paren-

theses, and standard errors of alphas are in brackets. The middle portion of the table reports

F -statistics and their p-values for the joint significance of the squared terms in the regressions.

The bottom portion reports mean CCARs and their T -values as well as number of clusters

over which the cross-sectional correlation robust standard errors by Cameron et al. (2011) (see

also Petersen, 2009) are computed. All the T -values, standard errors of alphas, and F -values

in the table are based on these cross-sectional correlation robust standard error computations.

The mean CCARs should be interpreted as the average monthly abnormal returns for stocks

with event periods up to 60 months rather than 5-year average monthly abnormal returns. It is

notable that the number of clusters (N clusters) reported in the bottom portion is the effective

number of observations for inferences instead of the considerably higher number of months (N

months) or number of firms (N firms) reported in the last two rows at the bottom. Similar

to Bessembinder and Zhang (2013), it is notable that the number of firms in the regression

samples are considerably smaller than in the full samples due to limited data availability for

the explanatory variables. Superscripts represent significance levels for two-tailed T -tests as

follows: a = 0.10, b = 0.05, and c = 0.01.

Interpretation: Unlike CCAR regressions using normalized firm characteristics in Table 2,

regressions based on non-normalized original characteristics do not materially affect abnormal

returns (alphas), their standard errors, and thereby inferences, whether or not higher order

terms are included into the regressions.
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IPO DIV
Linear 2nd order 3rd order Linear 2nd order 3rd order

∆beta −0.340 −0.315 −0.362 −0.224 −0.228 −0.316a

(−1.45) (−1.51) (−1.58) (−1.29) (−1.26) (−1.79)
(∆beta)2 −0.022 −0.021 −0.031 −0.025

(−0.52) (−0.50) (−0.44) (−0.35)
(∆beta)3 0.008 0.012

(1.11) (0.81)
∆size −0.122 −0.179 −0.466a 0.005 −0.004 −0.107

(−1.11) (−1.03) (−1.88) (0.06) (−0.04) (−0.58)
(∆size)2 0.002 −0.012a 0.000 0.011

(0.62) (−1.94) (0.06) (0.72)
(∆size)3 0.001b 0.001

(2.41) (0.74)
∆BM 0.403c 0.406c 0.531c 0.040 0.067 0.355

(3.14) (3.19) (3.98) (0.19) (0.36) (1.35)
(∆BM)2 −0.016 −0.016 −0.007 0.002

(−1.09) (−1.43) (−0.40) (0.11)
(∆BM)3 −0.002c −0.001

(−4.94) (−1.18)
∆mom 0.181 0.435 0.706b 0.534c 0.891c 1.342c

(0.85) (1.58) (2.16) (3.42) (4.23) (5.67)
(∆mom)2 −0.032b −0.114c −0.065a −0.295c

(−2.53) (−2.85) (−1.87) (−3.72)
(∆mom)3 0.003c 0.012c

(2.63) (3.04)
∆illiq 0.135 0.257a 0.259 0.101 2.989b 2.734a

(1.02) (1.74) (1.32) (0.34) (2.11) (1.89)
(∆illiq)2 0.004 0.003 0.055b −0.171

(1.34) (0.32) (2.07) (−0.26)
(∆illiq)3 0.000 −0.004

(−0.12) (−0.32)
∆isv −0.902c −0.898c −0.895c −0.616b −0.807c −0.811c

(−3.96) (−3.77) (−3.63) (−2.48) (−3.51) (−3.47)
(∆isv)2 0.016 0.003 −0.050 0.005

(0.79) (0.11) (−1.11) (0.10)
(∆isv)3 0.001 0.005a

(1.05) (1.84)
∆inv 0.136 0.254a 0.266b 0.240a 0.217a 0.186

(1.22) (1.93) (2.05) (1.93) (1.75) (1.11)
(∆inv)2 −0.016a −0.037b −0.006 −0.004

(−1.79) (−2.19) (−1.08) (−0.68)
(∆inv)3 0.001 0.000

(1.18) (0.70)
α̂ −0.531c −0.526c −0.433c −0.148 −0.111 −0.108

(−4.10) (−3.90) (−3.40) (−1.13) (−0.76) (−0.73)
Std. error (α̂) [0.129] [0.135] [0.127] [0.131] [0.146] [0.147]

Adjusted R2 0.002 0.002 0.003 0.002 0.003 0.004
F for linear terms 3.80 4.63 5.32 3.77 5.61 7.82
p-value 0.001 0.000 0.000 0.001 0.000 0.000
F for 2nd order terms 2.13 2.25 1.65 2.09
p-value 0.040 0.030 0.120 0.044
F for 3rd order terms 4.89 2.23
p-value 0.000 0.032

Samples Samples
Regression Full Regression Full

Mean(CCAR) −0.936c −1.384c 0.111 0.174a

T -value −4.27 −5.33 0.88 1.65
Std. Error (mean) 0.219 0.260 0.126 0.105
BHAR −7.092b −28.374c 7.015 12.629
t-bhar −1.97 −6.50 0.75 1.36
N clusters 342 371 370 372
N months 108,005 316,148 25,085 38,001
N firms 3,877 7,347 620 873

Table 5: Non-normalized firm characteristics and long-run abnormal returns for IPOs
and DIVs.
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Description: The table presents OLS regressions of monthly continuously compounded ab-

normal returns (CCARs) for IPOs and dividend initiations (DIVs) based on differences of firm

and market characteristics specified by Bessembinder and Zhang (2013). Unlike Table 3 above

as well as Table 4 in Bessembinder and Zhang, original non-normalized values of the factors

are used. For comparability purposes, slope coefficients in the table are scaled by standard

deviations of the factors. As in Table 3, the length of the event period for each stock is up

to 60 months or the time of delisting, whichever comes first. The T -ratios of the regression

coefficients are in parentheses, and standard errors of alphas are in brackets. The middle por-

tion of the table reports F -statistics and their p-values for the joint significance of the squared

terms in the regressions. The bottom portion reports mean CCARs and their T -values as

well as number of clusters over which the cross-sectional correlation robust standard errors

by Cameron et al. (2011) (see also Petersen, 2009) are computed. All the T -values, standard

errors of alphas, and F -values in the table are based on these cross-sectional correlation robust

standard error computations. The mean CCARs should be interpreted as the average monthly

abnormal returns for stocks with event periods up to 60 months rather than 5-year average

monthly abnormal returns. It is notable that the number of clusters (N clusters) reported in

the bottom portion is the effective number of observations for inferences instead of the con-

siderably higher number of months (N months) or number of firms (N firms) reported in the

last two rows at the bottom. Similar to Bessembinder and Zhang (2013), it is notable that the

number of firms in the regression samples are considerably smaller than in the full samples due

to limited data availability for the explanatory variables. Superscripts represent significance

levels for two-tailed T -tests as follows: a = 0.10, b = 0.05, and c = 0.01.

Interpretation: Unlike CCAR regressions using normalized firm characteristics in Table 3,

regressions based on non-normalized original characteristics do not materially affect abnormal

returns (alphas), their standard errors, and thereby inferences, whether or not higher order

terms are included into the regressions.
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Figure 1: Effect of normalization on regression relationship.
Description: The figure shows that scatter plot of y from the regression relation y = 2+x with

x = (−10,−5,−3, 0, 1, 2, 5, 10, 20) based on the Bessembinder and Zhang normalized x-values

(−1,−0.67,−0.33, 0, 0.20, 0.40, 0.60, 0.80, 1). Also, the figure shows the linear, quadratic, and

third order fitted regression lines.

Interpretation: Normalization non-linearizes the initial relationship y = 2 + x. The graph

shows that even the third order regression does not capture the implied non-linearity.
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Figure 2: Characteristics of M&A firms and their matched control firms for 60-month
event periods before and after the M&A month (t = 0).
Description: Following Bessembinder and Zhang, the plots report the median beta, size, BM,

momentum, idiosynctratic volatility, illiquidity, and investments. The event sample consists of

n = 4,169 M&As in the CRSP database from January 1980 to December 2005.

Interpretation: The firm characteristics tend to differ on average between event firms and

their matches.

37



0.5

0.6

0.7

0.8

0.9

1.0

Median beta

Event month

B
e

ta

−60 −24 0 24 48

SEO
Control

5
10
15
20
25
30
35
40

Median size

Event month
S

iz
e

 (
1

0
−4

)

−60 −24 0 24 48

SEO
Control

0.3

0.4

0.5

0.6

0.7

0.8

Median BM

Event month

B
M

 (
1

0
−3

)

−60 −24 0 24 48

SEO
Control

−10

0

10

20

30

40

50

Median momentum

Event month

M
o

m
e

n
tu

m
 (

%
)

−60 −24 0 24 48

SEO
Control

35

40

45

50

Median idiosyncratic volatility

Event month

V
o

la
ti
lit

y
 (

%
 p

.a
)

−60 −24 0 24 48

SEO
Control

0.00

0.05

0.10

0.15

0.20

Median illiquidity

Event month

Il
liq

u
id

it
y

−60 −24 0 24 48

SEO
Control

0.00

0.05

0.10

0.15

Median investments

Event month

In
ve

s
tm

e
n

ts

−60 −24 0 24 48

SEO
Control

Figure 3: Characteristics of SEO firms and their matched control firms for 60-month
event periods before and after the SEO month (t = 0).
Description: Following Bessembinder and Zhang, the plots report the median beta, size, BM,

momentum, idiosynctratic volatility, illiquidity, and investments. The event sample consists of

n = 5,226 SEOs in the CRSP database from from January 1980 to December 2005.

Interpretation: The firm characteristics tend differ on average between event firms and their

matches.
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Figure 4: Characteristics of IPO firms and their matched control firms for 60-month
event periods after the IPO month (t = 0).
Description: Following Bessembinder and Zhang, the plots report average the median beta,

size, BM, momentum, idiosynctratic volatility, illiquidity, and investments. The event sample

consists of n = 7,347 IPOs from January 1980 to December 2005.

Interpretation: The firm characteristics tend differ on average between event firms and their

matches.
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Figure 5: Characteristics of dividend initiation (DIV) firms and their matched control
firms for 60-month event periods before and after the DIV month (t = 0).
Description: Following Bessembinder and Zhang, the plots report the median beta, size, BM,

momentum, idiosynctratic volatility, illiquidity, and investments. The event sample consists of

n = 882 dividend initiations in the CRSP database from January 1980 to December 2005.

Interpretation: The firm characteristics tend differ on average between event firms and their

matches.
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A Appendix

A.1 Simulation results

41



Panel A: Regressor distributions with 0.70 probability of positive values
Number of clusters

20 50 100
Regressor Number of regressors Number of regressors Number of regressors
distributions Alpha 1 3 7 1 3 7 1 3 7
Uniform alpha(x) 0.999 1.001 1.002 1.001 0.999 1.002 1.000 1.000 1.001

s.e(alpha) 0.044 0.084 0.151 0.045 0.085 0.151 0.045 0.085 0.152
alpha(x, x2) 0.999 1.002 1.001 1.001 0.999 1.000 1.000 1.000 1.003

s.e(alpha) 0.046 0.092 0.173 0.046 0.093 0.174 0.046 0.093 0.175
alpha(u) 1.991 3.980 7.949 1.993 3.977 7.950 1.992 3.977 7.946

s.e(alpha) 0.044 0.078 0.128 0.044 0.079 0.128 0.044 0.079 0.129
alpha(u, u2) 1.387 2.170 3.723 1.390 2.167 3.721 1.389 2.167 3.724

s.e(alpha) 0.048 0.102 0.200 0.049 0.103 0.201 0.049 0.103 0.202
alpha(u; clust) 2.001 4.008 8.015 2.017 4.048 8.115 2.038 4.114 8.266

s.e(alpha) 0.048 0.085 0.138 0.048 0.086 0.139 0.048 0.086 0.139
alpha(u, u2; clust) 1.392 2.183 3.754 1.400 2.199 3.796 1.408 2.224 3.856

s.e(alpha) 0.057 0.114 0.216 0.057 0.115 0.218 0.057 0.116 0.220
Triangular alpha(x) 1.000 1.001 1.003 0.999 1.002 1.002 1.000 0.999 0.999

s.e(alpha) 0.043 0.080 0.137 0.044 0.081 0.138 0.044 0.081 0.138
alpha(x, x2) 1.000 1.000 1.005 0.999 1.003 1.002 1.000 0.998 0.999

s.e(alpha) 0.045 0.089 0.162 0.046 0.089 0.163 0.046 0.089 0.164
alpha(u) 1.570 2.711 4.991 1.569 2.711 4.990 1.569 2.708 4.987

s.e(alpha) 0.043 0.078 0.126 0.044 0.078 0.127 0.044 0.078 0.127
alpha(u, u2) 1.090 1.273 1.639 1.090 1.276 1.634 1.090 1.268 1.634

s.e(alpha) 0.048 0.103 0.203 0.049 0.104 0.205 0.049 0.104 0.206
alpha(u; clust) 1.579 2.740 5.060 1.593 2.786 5.163 1.617 2.851 5.322

s.e(alpha) 0.049 0.088 0.140 0.049 0.088 0.141 0.049 0.088 0.142
alpha(u, u2; clust) 1.094 1.286 1.668 1.100 1.306 1.703 1.108 1.322 1.759

s.e(alpha) 0.054 0.112 0.214 0.055 0.113 0.217 0.055 0.113 0.219
Normal alpha(x) 1.001 1.001 1.001 1.000 1.000 0.996 1.000 0.999 1.002

s.e(alpha) 0.043 0.080 0.135 0.044 0.080 0.136 0.044 0.081 0.136
alpha(x, x2) 1.001 1.000 1.001 1.000 1.000 0.997 1.000 0.999 1.000

s.e(alpha) 0.045 0.086 0.155 0.045 0.087 0.156 0.045 0.087 0.156
alpha(u) 1.498 2.492 4.484 1.497 2.492 4.479 1.497 2.492 4.488

s.e(alpha) 0.044 0.078 0.128 0.044 0.079 0.129 0.044 0.079 0.129
alpha(u, u2) 1.067 1.200 1.471 1.067 1.203 1.464 1.067 1.200 1.471

s.e(alpha) 0.049 0.106 0.210 0.050 0.107 0.212 0.050 0.107 0.212
alpha(u; clust) 1.508 2.522 4.553 1.522 2.567 4.654 1.546 2.636 4.825

s.e(alpha) 0.050 0.089 0.144 0.050 0.090 0.144 0.050 0.090 0.144
alpha(u, u2; clust) 1.071 1.211 1.497 1.076 1.228 1.525 1.082 1.244 1.575

s.e(alpha) 0.054 0.113 0.220 0.055 0.114 0.222 0.055 0.115 0.224
Laplace alpha(x) 1.000 1.000 1.002 1.000 1.001 1.003 0.999 1.000 1.001

s.e(alpha) 0.043 0.076 0.123 0.043 0.077 0.124 0.043 0.077 0.124
alpha(x, x2) 1.000 1.001 1.002 1.000 1.001 1.004 0.999 1.000 1.002

s.e(alpha) 0.043 0.080 0.136 0.044 0.080 0.137 0.044 0.081 0.137
alpha(u) 1.060 1.180 1.422 1.059 1.181 1.421 1.059 1.181 1.422

s.e(alpha) 0.046 0.083 0.136 0.046 0.083 0.137 0.046 0.084 0.138
alpha(u, u2) 0.794 0.386 -0.444 0.794 0.383 -0.438 0.792 0.381 -0.438

s.e(alpha) 0.053 0.116 0.236 0.053 0.117 0.238 0.053 0.117 0.238
alpha(u; clust) 1.070 1.210 1.492 1.084 1.256 1.596 1.108 1.326 1.760

s.e(alpha) 0.053 0.095 0.153 0.053 0.095 0.154 0.053 0.095 0.155
alpha(u, u2; clust) 0.797 0.394 -0.424 0.800 0.403 -0.392 0.803 0.413 -0.362

s.e(alpha) 0.055 0.119 0.240 0.055 0.120 0.243 0.055 0.121 0.246
Student T (5) alpha(x) 1.000 1.000 0.998 1.000 0.998 1.000 1.000 0.998 1.004

s.e(alpha) 0.043 0.078 0.127 0.043 0.078 0.128 0.043 0.078 0.129
alpha(x, x2) 1.000 1.000 0.997 1.000 0.998 1.000 1.000 0.998 1.004

s.e(alpha) 0.043 0.080 0.137 0.044 0.081 0.138 0.044 0.081 0.138
alpha(u) 1.270 1.813 2.897 1.271 1.811 2.897 1.271 1.810 2.900

s.e(alpha) 0.046 0.083 0.136 0.046 0.083 0.137 0.046 0.084 0.138
alpha(u, u2) 0.950 0.851 0.651 0.951 0.850 0.649 0.951 0.848 0.655

s.e(alpha) 0.052 0.115 0.232 0.053 0.116 0.234 0.053 0.116 0.235
alpha(u; clust) 1.280 1.843 2.965 1.296 1.885 3.070 1.318 1.953 3.233

s.e(alpha) 0.052 0.094 0.152 0.053 0.095 0.153 0.053 0.095 0.153
alpha(u, u2; clust) 0.953 0.859 0.670 0.957 0.869 0.694 0.961 0.880 0.727

s.e(alpha) 0.055 0.119 0.238 0.055 0.120 0.242 0.055 0.121 0.244

Table A.1: Simulation results for alphas and their standard errors in regressions on
original and normalized explanatory variables with explanatory variables generated from
different distributions.

42



Panel B: Regressor distributions with 0.60 probability of positive values
Number of clusters

20 50 100
Regressor Number of regressors Number of regressors Number of regressors
distributions Alpha 1 3 7 1 3 7 1 3 7
Uniform alpha(x) 0.999 1.000 1.001 0.999 1.000 1.000 0.999 1.001 1.000

s.e(alpha) 0.043 0.076 0.122 0.043 0.076 0.123 0.043 0.077 0.123
alpha(x, x2) 0.999 1.001 1.003 0.999 1.000 0.998 0.999 1.001 0.999

s.e(alpha) 0.047 0.098 0.189 0.048 0.099 0.191 0.048 0.099 0.191
alpha(u) 1.513 2.543 4.603 1.513 2.544 4.600 1.514 2.545 4.601

s.e(alpha) 0.042 0.074 0.114 0.043 0.074 0.115 0.043 0.075 0.116
alpha(u, u2) 1.194 1.584 2.368 1.193 1.585 2.360 1.194 1.586 2.363

s.e(alpha) 0.048 0.101 0.199 0.048 0.102 0.200 0.049 0.102 0.201
alpha(u; clust) 1.517 2.555 4.632 1.523 2.575 4.671 1.534 2.604 4.740

s.e(alpha) 0.047 0.082 0.127 0.047 0.083 0.128 0.047 0.083 0.128
alpha(u, u2; clust) 1.197 1.591 2.384 1.199 1.601 2.400 1.204 1.616 2.433

s.e(alpha) 0.055 0.111 0.211 0.055 0.112 0.214 0.055 0.113 0.215
Triangular alpha(x) 1.000 1.001 1.004 0.999 1.000 1.001 0.999 0.999 1.002

s.e(alpha) 0.042 0.075 0.117 0.043 0.075 0.118 0.043 0.075 0.118
alpha(x, x2) 0.999 1.001 1.004 0.999 1.001 1.001 0.999 0.999 1.002

s.e(alpha) 0.045 0.089 0.165 0.046 0.090 0.166 0.046 0.090 0.167
alpha(u) 1.254 1.767 2.789 1.254 1.766 2.787 1.255 1.763 2.783

s.e(alpha) 0.043 0.074 0.115 0.043 0.075 0.116 0.043 0.075 0.116
alpha(u, u2) 1.002 1.010 1.020 1.002 1.009 1.021 1.002 1.006 1.018

s.e(alpha) 0.049 0.103 0.204 0.049 0.104 0.205 0.049 0.104 0.206
alpha(u; clust) 1.259 1.780 2.819 1.265 1.798 2.863 1.276 1.826 2.931

s.e(alpha) 0.048 0.085 0.131 0.049 0.085 0.132 0.049 0.085 0.132
alpha(u, u2; clust) 1.004 1.016 1.035 1.007 1.024 1.057 1.011 1.032 1.083

s.e(alpha) 0.053 0.111 0.213 0.054 0.112 0.215 0.054 0.112 0.218
Normal alpha(x) 1.000 1.000 1.000 1.001 1.000 1.001 1.001 1.001 1.000

s.e(alpha) 0.042 0.074 0.117 0.043 0.075 0.118 0.043 0.075 0.118
alpha(x, x2) 1.000 1.001 1.000 1.001 1.000 1.001 1.001 1.000 0.999

s.e(alpha) 0.045 0.085 0.152 0.045 0.086 0.153 0.045 0.086 0.154
alpha(u) 1.245 1.735 2.718 1.247 1.737 2.721 1.246 1.738 2.720

s.e(alpha) 0.043 0.075 0.116 0.043 0.076 0.118 0.043 0.076 0.118
alpha(u, u2) 1.018 1.052 1.121 1.017 1.052 1.122 1.018 1.053 1.123

s.e(alpha) 0.050 0.106 0.211 0.050 0.107 0.213 0.050 0.107 0.213
alpha(u; clust) 1.250 1.748 2.748 1.258 1.769 2.797 1.267 1.801 2.867

s.e(alpha) 0.049 0.086 0.132 0.050 0.086 0.133 0.050 0.086 0.134
alpha(u, u2; clust) 1.020 1.058 1.133 1.021 1.064 1.151 1.025 1.075 1.174

s.e(alpha) 0.054 0.112 0.218 0.054 0.113 0.221 0.054 0.114 0.223
Laplace alpha(x) 1.000 0.999 0.999 1.000 1.000 1.002 0.999 1.000 1.000

s.e(alpha) 0.042 0.073 0.113 0.042 0.074 0.114 0.042 0.074 0.114
alpha(x, x2) 1.000 1.000 0.998 1.000 1.000 1.002 0.999 1.001 1.000

s.e(alpha) 0.043 0.078 0.131 0.043 0.079 0.132 0.043 0.079 0.132
alpha(u) 0.989 0.964 0.916 0.988 0.964 0.919 0.988 0.965 0.918

s.e(alpha) 0.045 0.079 0.123 0.046 0.080 0.124 0.046 0.080 0.125
alpha(u, u2) 0.846 0.540 -0.075 0.847 0.540 -0.068 0.845 0.543 -0.073

s.e(alpha) 0.053 0.117 0.239 0.053 0.118 0.240 0.053 0.118 0.240
alpha(u; clust) 0.993 0.977 0.947 0.999 0.997 0.995 1.009 1.028 1.067

s.e(alpha) 0.052 0.090 0.141 0.052 0.091 0.141 0.052 0.091 0.141
alpha(u, u2; clust) 0.848 0.544 -0.066 0.850 0.548 -0.047 0.849 0.557 -0.040

s.e(alpha) 0.055 0.119 0.242 0.055 0.121 0.244 0.055 0.121 0.247
Student T (5) alpha(x) 1.001 1.000 1.002 0.999 0.999 1.005 1.001 0.999 1.002

s.e(alpha) 0.042 0.074 0.115 0.042 0.074 0.116 0.042 0.074 0.116
alpha(x, x2) 1.001 1.000 1.002 1.000 0.999 1.005 1.001 0.999 1.002

s.e(alpha) 0.043 0.078 0.129 0.043 0.078 0.129 0.043 0.079 0.130
alpha(u) 1.132 1.392 1.921 1.131 1.392 1.923 1.132 1.394 1.920

s.e(alpha) 0.045 0.079 0.123 0.045 0.079 0.123 0.045 0.079 0.124
alpha(u, u2) 0.960 0.877 0.718 0.959 0.877 0.720 0.960 0.877 0.713

s.e(alpha) 0.053 0.116 0.235 0.053 0.116 0.236 0.053 0.117 0.237
alpha(u; clust) 1.136 1.405 1.951 1.142 1.424 1.998 1.153 1.456 2.065

s.e(alpha) 0.051 0.089 0.138 0.051 0.090 0.139 0.051 0.090 0.139
alpha(u, u2; clust) 0.962 0.881 0.727 0.961 0.885 0.740 0.965 0.893 0.746

s.e(alpha) 0.055 0.118 0.239 0.055 0.120 0.241 0.055 0.121 0.244

Table A.1 Continued.

43



Description: The table reports average OLS alpha estimates and averages of their clustering robust
standard errors from 5,000 simulations of N = 5,000 observations using various regression specifications.
The different average alpha values are estimated as follows: alpha(x) is from the linear model; alpha(x,
x2) is from models with linear and squared x-variables; alpha(u) and alpha(u, u2) are from linear
and quadratic regressions using the Bessembinder and Zhang (2013) normalized x-variables wherein
normalization is applied over the whole sample period; and alpha(u; cluster) and alpha(u, u2; cluster)
are from regressions using the Bessembinder and Zhang (2013) normalization cluster wise. Averages
of the cross-sectional correlation robust standard errors from the simulations are reported below the
alpha estimates. Panels A and B report the results assuming that each of the x-variables in the initial
regression has positive values with probabilities 0.70 and 0.60, respectively. The initial regression
observations in the simulations are generated from the following model:

y = α+ β1x1 + . . .+ βpxp + e, (A.1)

where p corresponds to either 1, 3, or 7 variables. The explanatory variables are generated in each
simulation from the same parent distribution with increasing kurtosis: uniform, triangular, normal,
Laplace, and Student-T with 5 degrees of freedom. The respective excess kurtoses (relative to the
normal distribution) are −6/5 (uniform), −3/5 (triangular), 0 (normal), 3 (Laplace), and 6 (Student-T ).
In each simulation experiment the sets of 1, 3, or 7 explanatory variables are generated independently
from the same distribution. The observations are divided into K = 20, 50, or 100 equal-sized subgroups,
and in each subgroup the intra-class correlation of the error terms is generated by the following random
component model:

eit = ηt + εit (A.2)

where ηt ∼ N(0, σ2
η) and εit ∼ N(0, σ2

ε ) are independent and also independent of the x-variables,

i = 1, . . . , N/K (N = 5000, K = 20, 50, 100). The random component model in equation (A.2) implies

error term intra-class correlation of ρe = σ2
η/(σ

2
η+σ2

ε ). Because the x-variables are independent, Petersen

(2009) shows that the intra-class correlation of the error terms does not affect the OLS standard errors

of the slope coefficients. However, the standard errors of the intercept terms are affected. Utilizing

equation (4) in Kolari and Pynnönen (2010), we adjust the component variances σ2
η and σ2

ε such that

the inflation factor
√

1 + (n− 1)ρe equals 2, where n = N/K. That is, in the model with only the

intercept term, the true standard error of the alpha estimate would be double that of the OLS standard

error. The simulations investigate the effect of the normalization on the alpha estimates and their

standard errors. All background parameters are the same in each simulation. The standard deviations

of the explanatory variables are all equal to 3, the R-square in each original regression is fixed to

0.80, such that with these values the variances of the error terms become σ2
e = (1 − R2)var[y] =(

β2
1 var[x1] + · · · + β2

p var[xp]
)

(1−R2)/R2. The error component variances are defined so that σ2
η = ρuσ

2
e

and σ2
ε = (1− ρe)σ

2
e . The intercept and the slope coefficients in initial regression (A.1) are set equal to

unity, i.e., α = β1 = · · · = βp = 1.

Interpretation: Normalizing regressors biases the intercept (alpha), which in financial economics

measures abnormal return, for estimates depending on the parent distribution of the regressors and the

number of regressors in the model. The normalization inflates standard errors of alphas also. The infla-

tion effect is independent of the distribution of the regressors. Normalized regressors of squared terms

are imposed to the regressions. OLS regressions with non-normalized regressors represent unbiased and

consistent estimates of the standard errors against which the standard errors of alphas from correspond-

ing regressions with normalized regressors can be compared. With seven regressions, including squared

terms in the models with normalized regressors biases the standard errors of alphas (for example) in

the case of normal regressors by 44% (Panel A, rightmost column: from 0.156 to 0.244) and in the case

of Student-T with 5 degrees of freedom by 77% (Panel A, rightmost column: from 0.138 to 0.244).
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A.2 Further IPO results

IPO on normalized characeristics IPO on non-normalized characteristisc
Linear 2nd order 3rd order Linear 2nd order 3rd order

∆size 0.302 0.333a 0.417 −0.035 −0.026 −0.299
(1.51) (1.65) (1.14) (−0.33) (−0.17) (−1.34)

(∆size)2 −0.125 −0.144 −0.001 −0.014b

(−0.46) (−0.53) (−0.40) (−2.08)
(∆size)3 −0.211 0.000b

(−0.45) (2.23)
∆BM 1.113c 1.078c 1.717c 0.567c 0.560c 0.693c

(4.82) (4.67) (4.20) (4.36) (4.33) (5.06)
(∆BM)2 −0.184 −0.340 −0.015 −0.015

(−0.79) (−1.44) (−0.98) (−1.24)
(∆BM)3 −1.115b −0.003c

(−2.29) (−4.94)
∆mom 1.382c 1.402c 1.552c 0.386 0.795c 1.132c

(3.90) (3.86) (4.33) (1.50) (2.66) (3.17)
(∆mom)2 −0.135 −0.073 −0.053c −0.157c

(−0.36) (−0.19) (−3.81) (−3.29)
(∆mom)3 −0.293 0.003c

(−0.56) (2.82)
∆illiq 0.772c 0.747c 0.022 0.225b 0.400c 0.424c

(3.33) (3.27) (0.06) (2.11) (2.88) (2.93)
(∆illiq)2 1.172c 1.130c 0.006a 0.001

(2.82) (2.80) (1.91) (0.09)
(∆illiq)3 1.326b 0.000

(2.39) (−0.78)
∆isv −1.931c −1.876c −0.775 −1.224c −1.185c −1.172c

(−4.90) (−5.19) (−1.50) (−4.02) (−3.98) (−3.83)
(∆isv)2 −0.259 −0.015 0.017 0.011

(−0.88) (−0.05) (0.84) (0.43)
(∆isv)3 −1.962c 0.001

(−3.19) (0.91)
∆inv 0.115 0.154 −0.127 0.126 0.197 0.192

(0.56) (0.77) (−0.40) (1.25) (1.57) (1.58)
(∆inv)2 −0.468a −0.500a −0.013a −0.032

(−1.84) (−1.92) (−1.66) (−1.62)
(∆inv)3 0.426 0.001

(0.99) (1.07)
α̂ −0.782c −0.783c −0.804c −0.896c −0.903c −0.798c

(−4.18) (−3.23) (−3.43) (−4.81) (−4.82) (−4.59)
Std. error (α̂) [0.187] [0.243] [0.235] [0.186] [0.187] [0.174]

Adjusted R2 0.005 0.005 0.005 0.003 0.004 0.005
F for linear terms 6.92 7.19 6.03 5.35 6.76 7.11
p-value 0.000 0.000 0.000 0.000 0.000 0.000
F for 2nd order terms 2.14 2.59 4.07 2.93
p-value 0.048 0.018 0.001 0.008
F for 3rd order terms 4.23 5.18
p-value 0.000 0.000

Regression Sample Full Sample
Mean(CCAR) −1.321c −1.384c

T -value −5.01 −5.33
Std. error (mean) 0.264 0.260
BHAR −19.646c −28.374c

t-bhar −5.487 −6.495
N clusters 354 371
N months 151,944 316,148
N firms 4,616 7,347

Table A.2: Regressions of long-run abnormal returns for IPOs on normalized and non-
normalized firm characteristics after removing beta characteristics from the models.
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Description: This table replicates Table 3 IPO OLS regressions in the main text with in-

significant beta characteristics excluded. Monthly continuously compounded abnormal returns

(CCARs) for IPOs are regressed on normalized differences of firm and market characteristics

specified by Bessembinder and Zhang (2013). Also, the last three columns of the table give

results of regressions on non-normalized characteristics, which replicate IPO regressions in Ta-

ble 5 without beta characteristics. As the definition of the beta characteristic results in a loss

of 18 to 29 months from the beginning of the event period (see footnote 12), most of these

months are retained after dropping the insignificant beta characteristics from the regressions.

The length of the event period for each stock is up to 60 months or the time of delisting,

whichever comes first. The T -ratios of the regression coefficients are in parentheses, and stan-

dard errors of alphas are in brackets. The middle portion of the table reports F -statistics and

their p-values separately for the joint significance of the linear, squared, and cubic terms in the

regressions. The bottom portion reports mean CCARs and their T -values as well as number

of clusters over which the cross-sectional correlation robust standard errors by Cameron et al.

(2011) (see also Petersen, 2009) are computed. All the T -values, standard errors of alphas,

and F -values in the table are based on these cross-sectional correlation robust standard error

computations. The mean CCARs should be interpreted as the average monthly abnormal

returns for stocks with event periods up to 60 months rather than 5-year average monthly ab-

normal returns. It is notable that the number of clusters (N clusters) reported in the bottom

portion is the effective number of observations for inferences instead of the considerably higher

number of months (N months) or number of firms (N firms) reported in the last two rows

at the bottom. Similar to Bessembinder and Zhang (2013), it is notable that the number of

firms in the regression samples are considerably smaller than in the full samples due to limited

data availability for the explanatory variables. Superscripts represent significance levels for

two-tailed T -tests as follows: a = 0.10, b = 0.05, and c = 0.01.

Interpretation: Removing insignificant beta characteristics from the IPO regressions in Ta-

ble 3 of the main text retains the lost 18 to 29 months in the beginning of the event periods

of IPOs. These retained months make the weakly statistically significant alphas (abnormal re-

turns) of the regression with squared terms for Bessembinder and Zhang normalized regressors

highly economically and statistically significant. Using non-normalized regressors, inclusion of

the lost months after dropping the beta characteristics does not affect inferences; in both cases

alphas are highly significant.
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IPO on normalized characeristics IPO on non-normalized characteristisc
Linear 2nd order 3rd order Linear 2nd order 3rd order

∆beta −0.476a −0.439a −0.403 −0.333 −0.348a −0.447b

(−1.86) (−1.81) (−1.22) (−1.62) (−1.70) (−2.07)
(∆beta)2 −0.348 −0.347 0.011 0.094a

(−1.30) (−1.30) (0.26) (1.95)
(∆beta)3 −0.095 0.011c

(−0.20) (2.96)
∆size 0.337a 0.367a 0.453 −0.035 −0.029 −0.296

(1.66) (1.79) (1.24) (−0.33) (−0.18) (−1.33)
(∆size)2 −0.088 −0.106 −0.001 −0.014b

(−0.33) (−0.40) (−0.38) (−2.06)
(∆size)3 −0.214 0.000b

(−0.45) (2.22)
∆BM 1.100c 1.068c 1.704c 0.555c 0.549c 0.675c

(4.83) (4.67) (4.20) (4.36) (4.33) (5.06)
(∆BM)2 −0.185 −0.341 −0.015 −0.015

(−0.79) (−1.45) (−1.00) (−1.28)
(∆BM)3 −1.112b −0.003c

(−2.29) (−4.99)
∆mom 1.409c 1.418c 1.527c 0.401 0.815c 1.153c

(3.91) (3.85) (4.30) (1.54) (2.69) (3.18)
(∆mom)2 −0.090 −0.024 −0.053c −0.158c

(−0.24) (−0.07) (−3.82) (−3.29)
(∆mom)3 −0.225 0.003c

(−0.43) (2.82)
∆illiq 0.717c 0.695c −0.039 0.218b 0.390c 0.416c

(3.23) (3.16) (−0.11) (2.07) (2.85) (2.91)
(∆illiq)2 1.176c 1.129c 0.006a 0.000

(2.84) (2.82) (1.87) (0.05)
(∆illiq)3 1.340b 0.000

(2.40) (−0.82)
∆isv −1.840c −1.799c −0.655 −1.203c −1.160c −1.150c

(−4.98) (−5.24) (−1.35) (−4.04) (−3.98) (−3.87)
(∆isv)2 −0.169 0.088 0.015 −0.010

(−0.59) (0.29) (0.72) (−0.39)
(∆isv)3 −2.030c 0.002

(−3.36) (1.54)
∆inv 0.116 0.156 −0.136 0.132 0.203 0.198a

(0.57) (0.77) (−0.43) (1.31) (1.63) (1.65)
(∆inv)2 −0.466a −0.500a −0.013a −0.033

(−1.83) (−1.92) (−1.67) (−1.63)
(∆inv)3 0.441 0.001

(1.03) (1.07)
α̂ −0.775c −0.719c −0.746c −0.888c −0.900c −0.814c

(−4.19) (−3.06) (−3.25) (−4.84) (−4.84) (−4.64)
Std. error (α̂) [0.185] [0.235] [0.230] [0.184] [0.186] [0.176]

Adjusted R2 0.005 0.005 0.005 0.003 0.004 0.005
F for linear terms 7.09 7.13 5.18 5.10 6.31 6.58
p-value 0.000 0.000 0.000 0.000 0.000 0.000
F for 2nd order terms 1.94 2.38 3.51 2.62
p-value 0.063 0.022 0.001 0.012
F for 3rd order terms 3.79 4.96
p-value 0.001 0.000

Regression Sample Full Sample
Mean(CCAR) −1.321c −1.384c

T -value −5.01 −5.33
Std. error (mean) 0.264 0.260
BHAR −19.646c −28.374c

t-bhar −5.487 −6.495
N clusters 354 371
N months 151,944 316,148
N firms 4,616 7,347

Table A.3: Regressions of long-run abnormal returns for IPOs on normalized and non-
normalized firm characteristics with beta estimated using daily returns in month t− 2.
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Description: This table replicates Table 3 IPO regressions in the main text with the month

t beta characteristic estimated similar to indiosyncratic volatility using daily returns in month

t − 2. OLS regressions of monthly continuously compounded abnormal returns (CCARs) for

IPOs based on normalized differences of firm and market characteristics specified by Bessem-

binder and Zhang (2013) are presented in the first three columns, and regressions with non-

normalized characteristics are presented in the last three columns. Instead of defining the beta

characteristic as in Bessembinder and Zhang, i.e., where beta from July of year t to June of

year t+ 1 is estimated from monthly returns from year t− 5 to year t− 1 with a minimum of

12 returns, betas used here are estimated from daily returns in month t− 2. Because IPOs do

not have pre-event returns, the Bessembinder and Zhang approach leads to a loss of 18 to 29

months from the beginning of the event period (see footnote 12). Our daily return method of

estimating betas leads to a loss of only two months, thus saving a great deal of months in the

beginning of the event period. The length of the event period for each stock is up to 60 months

or the time of delisting, whichever comes first. The T -ratios of the regression coefficients are

in parentheses, and standard errors of alphas are in brackets. The middle portion of the ta-

ble reports F -statistics and their p-values separately for the joint significance of the linear,

squared, and cubic terms in the regressions. The bottom portion reports mean CCARs and

their T -values as well as number of clusters over which the cross-sectional correlation robust

standard errors by Cameron et al. (2011) (see also Petersen, 2009) are computed. All the T -

values, standard errors of alphas, and F -values in the table are based on these cross-sectional

correlation robust standard error computations. The mean CCARs should be interpreted as

the average monthly abnormal returns for stocks with event periods up to 60 months rather

than 5-year average monthly abnormal returns. It is notable that the number of clusters (N

clusters) reported in the bottom portion is the effective number of observations for inferences

instead of the considerably higher number of months (N months) or number of firms (N firms)

reported in the last two rows at the bottom. Similar to Bessembinder and Zhang (2013), it

is notable that the number of firms in the regression samples are considerably smaller than

in the full samples due to limited data availability for the explanatory variables. Superscripts

represent significance levels for two-tailed T -tests as follows: a = 0.10, b = 0.05, and c = 0.01.

Interpretation: Estimating beta characteristics from daily returns allows the usage of the

same data as in Table A.2, thereby retaining all but the first two months of the 18 to 29 lost

months in IPO regressions in Table 3. Inclusion of beta characteristics in the regression does

not alter the high significance of alphas observed in Table A.2 without beta characteristics.

These findings further support the conclusion that the weak significance of IPO alpha in the

quadratic regression with Bessembinder and Zhang normalized regressors in Table 3 can be

attributed to the 18 to 29 lost months at the beginning of each IPO firm’s event period.
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IPO on normalized characeristics IPO on non-normalized characteristisc
Linear 2nd order 3rd order Linear 2nd order 3rd order

∆beta −0.405a −0.391a −0.184 −0.321a −0.331a −0.387a

(−1.78) (−1.76) (−0.50) (−1.67) (−1.73) (−1.95)
(∆beta)2 −0.098 −0.086 −0.013 0.054

(−0.35) (−0.30) (−0.31) (1.00)
(∆beta)3 −0.371 0.007b

(−0.62) (2.05)
∆size −0.053 −0.035 0.022 −0.096 −0.133 −0.416

(−0.22) (−0.15) (0.05) (−0.82) (−0.69) (−1.61)
(∆size)2 −0.123 −0.132 0.001 −0.012a

(−0.46) (−0.49) (0.34) (−1.89)
(∆size)3 −0.114 0.000b

(−0.19) (2.35)
∆BM 0.724c 0.700c 1.164c 0.411c 0.413c 0.541c

(3.44) (3.32) (3.59) (3.18) (3.21) (4.01)
(∆BM)2 −0.388 −0.471a −0.016 −0.017

(−1.48) (−1.75) (−1.09) (−1.44)
(∆BM)3 −0.776a −0.002c

(−1.71) (−5.02)
∆mom 0.999c 1.019c 1.423c 0.186 0.449 0.730b

(3.02) (3.00) (3.37) (0.87) (1.62) (2.20)
(∆mom)2 −0.069 −0.011 −0.033b −0.118c

(−0.18) (−0.03) (−2.56) (−2.86)
(∆mom)3 −0.709 0.003c

(−1.29) (2.64)
∆illiq 0.724c 0.681c 0.313 0.143 0.269a 0.282

(2.75) (2.65) (0.74) (1.07) (1.81) (1.42)
(∆illiq)2 0.600a 0.583a 0.004 0.002

(1.72) (1.70) (1.38) (0.24)
(∆illiq)3 0.710 0.000

(1.18) (−0.21)
∆isv −1.766c −1.756c −0.621 −0.938c −0.934c −0.941c

(−4.72) (−4.84) (−1.20) (−3.89) (−3.73) (−3.60)
(∆isv)2 0.092 0.335 0.018 0.000

(0.30) (1.00) (0.92) (0.01)
(∆isv)3 −1.993c 0.001

(−2.91) (1.10)
∆inv 0.423b 0.433b 0.298 0.147 0.263b 0.280b

(2.06) (2.12) (0.92) (1.31) (2.01) (2.16)
(∆inv)2 −0.345 −0.352 −0.016a −0.037b

(−1.16) (−1.18) (−1.80) (−2.16)
(∆inv)3 0.183 0.001

(0.38) (1.13)
α̂ −0.573c −0.461a −0.537b −0.615c −0.621c −0.553c

(−3.40) (−1.71) (−1.99) (−3.73) (−3.68) (−3.42)
Std. error (α̂) [0.169] [0.269] [0.270] [0.165] [0.169] [0.162]

Adjusted R2 0.003 0.003 0.003 0.002 0.002 0.003
F for linear terms 5.69 5.73 3.63 3.50 4.36 4.78
p-value 0.000 0.000 0.001 0.001 0.000 0.000
F for 2nd order terms 0.99 1.32 2.10 2.25
p-value 0.436 0.239 0.044 0.030
F for 3rd order terms 2.12 4.96
p-value 0.041 0.000

Regression Sample Full Sample
Mean(CCAR) −0.936c −1.384c

T -value −4.27 −5.33
Std. error (mean) 0.219 0.260
BHAR −7.092b −28.374c

t-bhar −1.973 −6.495
N clusters 342 371
N months 108,005 316,148
N firms 3,877 7,347

Table A.4: Regressions of long-run abnormal returns for IPOs on normalized and non-
normalized firm characteristics with beta estimated from daily returns and using the
event months available in Table 3 for IPOs.
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Description: This table replicates Table 3 IPO regressions in the main text with the month

t beta characteristic estimated similar to indiosyncratic volatility using daily returns in month

t − 2. Instead of the full data used in Table A.3, the subset available for IPO regressions

in Table 3 are used here. Using this subset, the table reports OLS regressions of monthly

continuously compounded abnormal returns (CCARs) for IPOs based on normalized differences

of firm and market characteristics specified by Bessembinder and Zhang (2013) in the first three

columns and regressions with non-normalized characteristics in the last three columns. Instead

of defining the beta characteristic as in Bessembinder and Zhang, i.e., where beta from July of

year t to June of year t+1 is estimated from monthly returns from year t−5 to year t−1 with

a minimum of 12 returns, betas used here are estimated from daily returns in month t − 2.

Because IPOs do not have pre-event returns, the Bessembinder and Zhang approach leads to

a loss of 18 to 29 months of returns from the beginning of the event period (see footnote 12).

Our daily return method of estimating beta leads to a loss of only two months, thus saving

a great deal of months in the beginning of the event period. To assess the effect of dropping

the lost months in the Bessembinder and Zhang approach, the table uses only those returns

available in their approach. The length of the event period for each stock is up to 60 months

or the time of delisting, whichever comes first. The T -ratios of the regression coefficients

are in parentheses, and standard errors of alphas are in brackets. The middle portion of the

table reports F -statistics and their p-values separately for the joint significance of the linear,

squared, and cubic terms in the regressions. The bottom portion reports mean CCARs and

their T -values as well as number of clusters over which the cross-sectional correlation robust

standard errors by Cameron et al. (2011) (see also Petersen, 2009) are computed. All the T -

values, standard errors of alphas, and F -values in the table are based on these cross-sectional

correlation robust standard error computations. The mean CCARs should be interpreted as

the average monthly abnormal returns for stocks with event periods up to 60 months rather

than 5-year average monthly abnormal returns. It is notable that the number of clusters (N

clusters) reported in the bottom portion is the effective number of observations for inferences

instead of the considerably higher number of months (N months) or number of firms (N firms)

reported in the last two rows at the bottom. Similar to Bessembinder and Zhang (2013), it

is notable that the number of firms in the regression samples are considerably smaller than

in the full samples due to limited data availability for the explanatory variables. Superscripts

represent significance levels for two-tailed T -tests as follows: a = 0.10, b = 0.05, and c = 0.01.

Interpretation: Estimating beta characteristics from daily returns as in Table A.3 but using

only those months available for IPO regressions in Table 3 allows us to compare whether

differences in beta definitions affect alpha inferences in IPO regressions. Regarding alphas, the

results in columns 2 to 4 are virtually identical to those for IPO regressions in columns 2 to

4 of Table 3 based on normalized regressors. Also, the alpha results for IPO regressions with

non-normalized regressors in columns 5 to 7 of this table are virtually identical to those for

IPO regressions based on non-normalized characteristics in columns 2 to 4 in Table 5. Thus,

these results, in combination with those of Tables A.2 and A.3, further support the conclusion

that the statistically weak significant IPO alpha in the quadratic regression with Bessembinder

and Zhang normalized regressors in Table 3 is attributable to the 18 to 29 lost months from

the beginning of each IPO firm’s event period. Accordingly, because normalization inflates the

standard error of alpha and thereby attenuates the power of the related T -test as discussed in

Section 1, a reduced number of observations further exacerbates the symptom.
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