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Abstract

We replicate French, Schwert, and Stambaugh (1987) (FSS) with up-to-date data
and new tools from the modern toolbox of econometric methods. As we proceed,
we highlight the main technical details and econometric methods from the original
study and, when necessary, update them. While our main goal is to replicate FSS as
carefully as possible, we also aim to help new researchers quickly gain an in-depth
understanding of the major features of the original study, and to demonstrate why
FSS is fundamental to the asset pricing literature. We finish by text mining the titles
and abstracts of over one thousand citing studies for information on why other studies
cite FSS and which parts of FSS receive the most attention. After careful replication,
we confirm that the main results in FSS hold and continue to hold through 2019.

1 Introduction

Lying at the heart of the asset pricing literature, French, Schwert, and Stambaugh (1987)

(hereafter FSS) pose a question central to the discipline; what is the relation between

the expected market risk premium, defined as the expected return on a stock market

portfolio minus the risk-free interest rate, and risk, as measured by the volatility of the

stock market? Thirty-three years later, we replicate this study with up-to-date data and
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new tools from the modern toolbox of econometric methods. As we proceed, we highlight

the main technical details and econometric methods from the original study and, when

necessary, update them. While our main goal is to replicate FSS as carefully as possible,

we also aim to help new researchers quickly gain an in-depth understanding of the major

features of the original study, and to demonstrate why FSS is fundamental to the asset

pricing literature.

At its core, FSS is an empirical study on the intertemporal relation between risk and

expected stock returns. More specifically, FSS investigate relations of the form

E
(

Rmt − R f t|σ̂mt
)
= α + βσ̂

p
mt, p = 1, 2, (1)

where Rmt is the return on a stock market portfolio, R f t is the risk-free interest rate, σ̂mt

is an ex ante measure of the portfolio’s standard deviation, and σ̂2
mt is an ex ante measure

of the variance. If β = 0 in (1), the expected risk premium is unrelated to the ex ante

volatility. If α = 0 and β > 0, the expected risk premium is proportional to the standard

deviation (p = 1) or variance (p = 2) of stock market returns.

Knowledge of FSS is now essential for understanding the market-wide risk-return

relation. Yet, at the time it was published, there were already a number of closely-related

studies on the topic of risk and return.1 Before FSS, Pindyck (1984) argued that the relation

between expected returns and volatility is strong, while Poterba and Summers (1986)

argued that the time-series properties of volatility made this unlikely. Before that, Merton

(1980) estimated a risk-return relation very similar to (1) with contemporaneous measures

of volatility.

What, then, is the critical insight that makes FSS different from these earlier studies?

We suggest it is the recognition that realized market volatility is in part predicted and

1See, for example, Black, Jensen, and Scholes (1972), Fama and MacBeth (1973), Roll and Ross (1980),
Breeden, Gibbons, and Litzenberger (1989), and Chen, Roll, and Ross (1986).
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in part unpredicted by the market. Predicted volatility is the expected level of volatility

based on past observations of realized volatility. Unpredicted volatility is the difference

between the level of volatility predicted and the amount of volatility realized. French et al.

(1987) show how combining predicted and unpredicted volatility into a single measure

of realized volatility obscures the positive relation between the expected risk premium

and predicted volatility. Having the insight to decouple predicted volatility from realized

volatility enables FSS to discover the volatility feedback effect, where a volatility surprise

causes the market to reevaluate its expectation of future risk premiums and make an

immediate adjustment in stock prices.2

After careful replication, we confirm that the main results in FSS hold and continue to

hold through 2019. We confirm that there is a positive relation between the expected risk

premium on common stocks and the level of predicted volatility, though the variability of

stock returns is so large that it is difficult to discriminate among alternative specifications

of this relation. We also confirm that there is a negative and significant relation between

the unpredicted level of volatility and excess holding period returns. In sum, we confirm

that there is a market-wide volatility feedback effect through 2019. We also confirm that

the magnitude of this effect is too large to be attributed to the leverage effect discussed in

Black (1976) and Christie (1982).

2 Why is FSS Fundamental to Asset Pricing?

According to the Web of Science database, FSS is cited in 1,189 studies published through

June 2020. In Appendix A, we discuss the results from text mining the titles and abstracts

of these studies for information on why other studies cite FSS and which parts of FSS

receive the most attention. In this section, we discuss why FSS is fundamental to the asset

2Pindyck (1984), French et al. (1987), and Campbell and Hentschel (1992) are often cited together as the
foundational studies on the volatility feedback effect.
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pricing literature.

The focus of FSS is market volatility and market volatility is a common measure of

risk. French et al. (1987) show how higher (lower) than expected volatility drives up

(down) expected risk premiums, leading to an immediate decrease (increase) in stock

market value. French et al. (1987) establish this relation and show how it represents a

positive relation between conditional volatility and expected returns through the discount

rate channel. If stock values drop in response to a volatility spike, then discount rates

must have risen, which are identical to expected returns. Most (if not all) of the major

multiperiod asset pricing models predict such a relation.

For example, the risk-return relation established in FSS underlies the intertemporal

capital asset pricing model (ICAPM) of Merton (1973), which recognizes investors’ desire

to hedge against future changes in the investment opportunity set. This desire induces

an additional systematic risk premium beyond the usual CAPM beta. Starting from the

ICAPM, other major asset pricing models establish links between stock returns and key

macroeconomic variables thought to represent uncertainty over future investment oppor-

tunities and expected returns. Prominent among these is the growth rate in consumption

per capita in Campbell and Cochrane (1999) and Bansal and Yaron (2004). Other key

macroeconomic variables include default spreads and term spreads in Fama and French

(1989), short-term-interest rates in Shanken (1990), lagged production growth, interest

rates, and the market dividend-price ratio in Chen (1991), and changes in the federal

funds rate in Bernanke and Kuttner (2005). For international stock markets, Ferson and

Harvey (1993) add foreign currency returns, global inflation, world interest rates, and

world industrial production. In sum, the evidence on the market-wide risk-return re-

lation established in FSS substantiates the predictions of most of the major multiperiod

asset pricing models.

With this in mind, we now turn our attention onto the replication itself. As we pro-
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ceed, we highlight the main technical details and econometric methods from the original

study and, when necessary, update them. For those who would like to see how we make

our calculations, we give major segments of the R code used for the replication in Ap-

pendix B.3

3 Time Series Properties of the Data

French et al. (1987) recognize that realized market volatility is in part predicted and in

part unpredicted by the market. Predicted volatility is the expected level of volatility

based on past observations of realized volatility. Unpredicted volatility is the difference

between the level of volatility predicted and the amount of volatility realized. It follows

that a major focus of FSS is making correct estimates for realized and predicted market

volatility.

3.1 Standard Deviations of Stock Market Returns

French et al. (1987) calculate realized monthly market volatility from the daily returns on

the S&P composite portfolio from 1928–84. We extend their sample period to 2019 for this

calculation and for the remainder of the replication.4

Equation (2) in FSS is the function for calculating realized monthly market volatility

(variance) from daily stock returns

σ2
mt =

Nt

∑
i=1

r2
it + 2

Nt−1

∑
i=1

ritri+1,t, (2)

where there are Nt daily returns, rit, in month t. French et al. (1987) assume that the mean

3All of our data analysis is conducted using R software by the R Core Team (2020).
4Daily returns on the S&P composite portfolio from January 3, 1928 to July 2, 1962 are from Schwert

(1990) and from the Center for Research in Security Prices (CRSP) thereafter.
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daily return is zero and that the returns are autocorrelated for one lag due to nonsyn-

chronous trading.5 Equation (2) follows from the variance sum law, where the sum of two

correlated random variables, σ2
x+y, is equal to σ2

x + σ2
y + 2σxy, where σxy is the covariance.6

The calculation of monthly variance in (2) is critical because σ2
mt and the monthly standard

deviation, σmt, (more generally, σ
p
mt) are the only estimates for realized monthly market

volatility in the remainder of the study.

Here we call attention to two concerns with (2). First, Schwert (1989b) points out that

the variance estimates from (2) are not guaranteed to be positive. Negative estimates are

nonsensible because variance is the expected squared deviation around the mean and

therefore always nonnegative. Though none of the monthly variances are negative, σ2
mt

would have been negative in September 1906, which is outside the original sample pe-

riod.7 The second concern is that monthly volatility is calculated as a function of i, the

number of trading days in the month. Some months have more trading days than oth-

ers. This means that months having more trading days might automatically have higher

volatility than those with fewer trading days because (2) has more terms in some months

than in others. A simple correction is to calculate monthly volatility per number of trad-

ing days in the month.

We calculate (2) and then replicate FSS Figure 1a by plotting the monthly percent re-

alized standard deviation estimates in Figure 1. We also add plots of the autocorrelation

function (ACF), partial autocorrelation function (PACF), and a histogram with an overlay

of the normal distribution.

[Figure 1 here]

The top of Figure 1 is a plot of the time-series of monthly percent realized standard
5See, for example, Fisher (1966) and Scholes and Williams (1977).
6To see how (2) works, assume i = {1, 2}, so the variance on day i = 1 is r2

1t + 2r1tr2t and the variance
on day i = 2 is r2

2t. The sum of these is r2
1t + r2

2t + 2r1tr2t, which follows the variance sum law exactly.
7We discover the negative variance in September 1906 by calculating (2) using all of the available Schw-

ert (1990) data, which begins on February 17, 1885.
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deviations from 1928–2019. This part of Figure 1 highlights how much realized volatil-

ity changes from month to month. There are some periods of high and others of low

volatility, meaning that stock returns are heteroskedastic. Prior evidence of heteroskedas-

tic stock returns is also found in Officer (1973). To isolate stable periods, FSS divide the

full sample of monthly realized volatility into two subperiods, 1928–52 and 1953–84. We

add 1985–2019.

We replicate FSS Table 1 and report descriptive statistics for the realized standard de-

viations in Table 1, Panel A.

[Table 1 here]

We confirm that the mean and standard deviation of σmt are higher in 1928–52 than in

1953–84. Our new subperiod, 1985–2019, is in between. The autocorrelations of σmt are

large and decay slowly in each subperiod. This feature can also be seen at the bottom

of Figure 1, where we plot the ACF and PACF for 1928–2019. Table 1, Panel A, shows

that σmt has significant positive skewness. This feature can also be seen at the bottom of

Figure 1, where we plot the histogram for σmt with an overlay of the normal distribution.

Under the hypothesis of a stationary normal distribution,
√

6T(T−1)/(T−2)(T+1)(T+3) is the

exact asymptotic standard error for the sample skewness.8 French et al. (1987) calculate

the approximate asymptotic standard error for the sample skewness as
√

6/T.

With realized volatility in hand, FSS estimate predicted volatility, σ̂
p
mt. Predicted volatil-

ity is unobservable, so it must be estimated from realized volatility. French et al. (1987)

calculate predicted volatility in two ways. The first follows the approach of Box and

Jenkins (1970b). Box-Jenkins forecasting involves estimating an autoregressive integrated

moving average (ARIMA) model to find the best fit of a time series to past values of it-

self. Box-Jenkins forecasting generally involves five steps: (i) data preparation, (ii) model

8The formula for calculating the standard error of the sample skewness is from Weinberg, Harel, and
Abramowitz (2021).
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selection, (iii) parameter estimation, (iv) model checking, and (v) prediction.

Figure 1 shows that some months are outliers in the sense that the σmt in that month is

much more extreme than in others. To deemphasize these outliers, FSS calculate the nat-

ural logarithm of monthly realized standard deviation as ln σmt. Table 1, Panel B, reports

descriptive statistics for ln σmt. Notice that the skewness is gone and that the autocorrela-

tions are close to zero beyond lag three.

We add here that another way to deemphasize outliers is with the Box-Cox transfor-

mation of Box and Cox (1964). Box-Cox transforms nonnegative nonnormal data into

something more normal through

fλ(x) =


xλ−1

λ if λ 6= 0;

ln(x) if λ = 0,
(3)

where values from −1 to +2 are considered for λ and the final λ is the one that results

in the best approximation of the normal distribution. The Box-Cox transformation equals

the log transformation when λ = 0.

We calculate λ as −0.42 from 1928–84, −0.79 from 1928–52, −0.13 from 1953–84, and

−0.57 from 1985–2019, though there is little practical difference between the transformed

volatility estimates. The correlation between the log volatility and the Box-Cox volatility

ranges from 0.9349 from 1928–52 to 0.9991 from 1953–84.

It is also true that, for regression models in general, the dependent variable does not

need to be normal anyway. All that matters are the properties of the regression estimates,

and the central limit theorem guarantees that these estimates will be normal (or essen-

tially equivalent; follow a t-distribution) as the sample size becomes larger. However, the

properties of time-series regression coefficient estimates are not normal when the variable

in the regression is nonstationary, meaning that the mean, variance, and autocorrelations
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are not constant through time. The central limit theorem breaks down when the variable

is nonstationary and the coefficient estimates will follow a nonstandard distribution. It is

preferable to work with stationary data so that the coefficient estimates follow a distribu-

tion we understand and with which we are more familiar.

French et al. (1987) assess the stationarity of ln σmt by calculating the Q-statistic of Box

and Pierce (1970a) as a test for the absence of autocorrelation up to 12 lags. We calculate

the Ljung and Box (1978) Q-statistic instead because it is a modified version of the Box

et al. (1970a) Q-statistic with increased power in finite samples. The null hypothesis of

both tests is no autocorrelation. We confirm that the Q-statistics are significant in every

subperiod, and the null of no autocorrelation is rejected. To achieve stationarity, FSS take

first differences in ln σmt.

We add here that another way to assess stationarity is with the augmented Dickey-

Fuller (ADF) test of Dickey and Fuller (1979) and Said and Dickey (1984). The null hy-

pothesis of the ADF test is the presence of a unit root, while the alternative is stationarity.

We calculate the ADF test for the first difference in ln σmt for 12 lags. We reject the null

hypothesis and find that the first difference in ln σmt is stationary in every subperiod.9

Figure 2 is a re-plot of Figure 1 with the first difference in ln σmt in place of σmt. Table

1 and Figure 2 show the log transformation and first-differencing work as intended. The

autocorrelations are lower and the data are much more normal looking.

[Figure 2 here]

With the data preparation step complete, step two in Box-Jenkins is model selection.

French et al. (1987) select an ARIMA regression model of the form

(1− L) ln σmt = θ0 +
(

1− θ1L− θ2L2 − θ3L3
)

ut, (4)

9Using subjective judgment as to the need for a drift or time trend can enhance the power of unit root
tests. See, for example, Kennedy (2003, p. 403). We include a drift term in our ADF tests.
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which is an ARIMA(0, 1, 3) model with zero autoregressive (AR) terms, first-differencing

of the dependent variable (I), three moving average (MA) terms, and a drift term. This is

known as a short-memory model because ln σmt is completely uncorrelated with lags of

itself beyond lag three.

We add here that our ACF and PACF plots are useful for identifying the number of

AR or MA terms for an ARIMA(p, d, 0) or an ARIMA(0, d, q) model. The data may follow

an ARIMA(p, d, 0) model if the ACF is exponentially decaying or sinusoidal and there is

a significant spike at lag p in the PACF, but none beyond lag p. The data may follow an

ARIMA(0, d, q) model if the PACF is exponentially decaying or sinusoidal and there is a

significant spike at lag q in the ACF, but none beyond lag q. Looking at the ACF and PACF

plots in Figure 2, it seems that the ARIMA(0, 1, 3) model is a good choice. The PACF is

decaying and there are no significant spikes in the ACF beyond lag three but for lag 12.

Step three in Box-Jenkins is parameter estimation. Table 1, Panel C, summarizes the

results from regression (4) in each subperiod.10 We confirm that the estimates for the con-

stant term, θ0, are small compared to their standard errors, suggesting no deterministic

drift in the standard deviation of the stock market return. The MA estimate at lag one

is large in all periods, whereas the estimate at lag two is largest from 1928–52, and the

estimate at lag three is largest from 1953–84. The F-statistic of 0.99 testing the hypothesis

that the parameters are the same in 1928–52 and 1953–84 is not significant. We do not

adjust this calculation for unequal variances.

With the parameter estimates in hand, step four in Box-Jenkins is model checking.

This involves confirming that the model errors, ut, are uncorrelated. French et al. (1987)

calculate the Q-statistic of Box et al. (1970a) for 12 lags of ut to check for the absence of

autocorrelation.

10We estimate the ARIMA models using the forecast package of Hyndman, Athanasopoulos, Bergmeir,
Caceres, Chhay, O’Hara-Wild, Petropoulos, Razbash, Wang, and Yasmeen (2020).
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We add here that the Q-statistic follows the chi-squared distribution with h degrees of

freedom, where h is the number of lags being tested. When the Ljung et al. (1978) test is

applied to the residuals of an ARIMA model, though, the degrees of freedom are h minus

the number of parameters in the ARIMA model. If we use the critical value for h = 12,

which is 21.03, we confirm that the residuals from (4) are not significantly autocorrelated.

If we use the critical value for h = 8, which is 15.51, then the Ljung et al. (1978) test rejects

the null hypothesis that the residuals are not autocorrelated in the 1928–52 subperiod.

Step five in Box-Jenkins is prediction. French et al. (1987) calculate predicted volatility,

ln σ̂mt, as the fitted values from regression (4). The fitted values estimated by an ARIMA

model are predictions calculated using only the prior realized values of the dependent

variable. It follows that the predicted volatility from regression (4) is not subject to looka-

head bias because, conditional on the parameters, which are treated as if they are known

to investors, it is dependent only on the past realized values of monthly volatility. There

is one major caveat, though. In order to be useful, the fitted values, ln σ̂mt, must be back-

transformed in terms of the original data, σ̂mt (without logs). It is well-known that if

ln σ̂mt is normally distributed with mean µ and variance u2, then σ̂mt is log-normally dis-

tributed with mean exp
(
µ + u2/2

)
. Equations (4a) and (4b) in FSS give the exact back-

transformations as

σ̂mt = exp [ln σ̂mt + 0.5V(ut)] (5)

σ̂2
mt = exp [2 ln σ̂mt + 2V(ut)] , (6)

where ln σ̂mt are the fitted values and V(ut) is the variance of the residuals from regres-

sion (4). We calculate predicted monthly standard deviation, σ̂mt, and predicted monthly

variance, σ̂2
mt, following (5) and (6).

We replicate FSS Figure 1b and plot in Figure 3 the predicted monthly standard devi-
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ations from (5). To make the comparison easier, we plot the realized monthly standard

deviations from (1) above the predicted monthly standard deviations from (5).

[Figure 3 here]

Predicted monthly standard deviation, σ̂mt, tracks realized monthly standard devia-

tion, σmt, closely, although the predicted series is smoother. We calculate R2 as the squared

correlation between σ̂mt and σmt. The R2 values are 0.54 from 1928–84, 0.49 from 1928–52,

0.41 from 1953–84, and 0.28 from 1985–2019.

The back-transformed fitted values from (5) and (6), σ̂
p
mt, are the first estimates of pre-

dicted volatility in FSS. Unpredicted volatility, σ
pu
mt , then equals, σ

p
mt − σ̂

p
mt, the difference

between realized and predicted volatility.11

3.2 ARCH Models

One of the major assumptions of volatility feedback is that conditional volatility is au-

tocorrelated and predictable. To help establish predictability, FSS fit the autoregressive

conditional heteroskedasticity (ARCH) model of Engle (1982)

rt = α + εt, εt ∼ N (0, σ2
t ), (7)

σ2
t = a + bε2

t−1, (8)

to represent a series with changing volatility. Unlike ARIMA, ARCH models the return,

rt, and variance, σ2
t , processes jointly in two equations. The mean equation (7) describes

the return as a function of other variables plus an error term. The variance equation (8)

describes the evolution of the conditional variance of the error from the mean equation as

a function of past lagged errors.

11Amihud (2002, 2019) use the same predicted/unpredicted approach to analyze the relation between
expected/unexpected stock liquidity and future stock returns.
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French et al. (1987) model the conditional excess return process as an MA(1) model

Rmt − R f t = α + εt − θεt−1, (9)

to account for nonsynchronous trading. The term Rmt − R f t is the percentage change in

the S&P composite portfolio minus the risk-free interest rate on Treasury bills from CRSP.

French et al. (1987) model the conditional variance process using the GARCH (gener-

alized ARCH) model of Bollerslev (1986), where

σ2
t = a + bσ2

t−1 + c1ε2
t−1 + c2ε2

t−2 (10)

is the GARCH variance equation. The GARCH variance equation describes the evolution

of the conditional variance of the error from the mean equation as a function of lagged

errors plus past values of the conditional variance. Equation (10) is a GARCH(2, 1) model

with two lags of the error from the mean equation and one lagged value of the conditional

variance.

We replicate FSS Table 2 and report the estimates for regression (9) and (10) with daily

risk premiums in Table 2.12

[Table 2 here]

The GARCH estimates indicate that the variance of the daily risk premiums is highly

autocorrelated. The sum (b + c1 + c2) must be less than 1.0 for the volatility process to be

stationary. This sum equals 0.997, 0.997, 0.993, and 0.984, for the 1928–84, 1928–52, 1953–

84, and 1985–2019 subperiods, respectively. French et al. (1987) calculate a chi-square test

to check the constancy of the GARCH parameters.

We add here that we now know from Robins and Smith (2020) that the chi-square test

12We estimate the GARCH models using the rugarch package of Ghalanos (2020).
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for constancy is not valid unless the breakpoint dividing the subperiods is exogenous.

Robins et al. (2020) also show how the chi-square test is very sensitive to the breakpoint,

where the results can change from significant to insignificant simply by moving the break-

point backward or forward by just one period. In light of this, we check the constancy of

the GARCH parameters with the Nyblom (1989) test, which is a correct test for the con-

stancy of GARCH parameters. We confirm that the GARCH parameters are not constant

from 1928–84.

3.3 Stock Market Risk Premiums

We follow FSS and use the value-weighted portfolio of all New York Stock Exchange

(NYSE) stocks from CRSP to measure monthly stock market returns. We calculate monthly

excess holding period returns by subtracting the monthly risk-free interest rate on Trea-

sury bills from CRSP. The mean excess holding period return is then an estimate of the

mean expected risk premium.

We replicate FSS Table 3 and report the mean, standard deviation, and skewness of

the monthly excess holding period returns in Table 3.

[Table 3 here]

We estimate the mean three ways: (i) ordinary least squares (OLS); (ii) weighted least

squares (WLS), where the weight for each observation is 1/σmt, the reciprocal of the re-

alized monthly standard deviation estimated from the daily S&P returns; and (iii) WLS,

where the weight is 1/σ̂mt, the reciprocal of the predicted standard deviation from the

ARIMA model in Table 1.

The difference between OLS and WLS is that WLS minimizes the weighted sum of

squares instead of the residual sum of squares. An estimate by OLS is only efficient in

terms of having the smallest mean square error if the data have a constant variance. The
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purpose of WLS is to improve the efficiency of the estimate by accounting for nonconstant

variance (heteroskedasticity). Weighted least squares deemphasizes values with a high

standard deviation to produce more efficient estimates.

The means weighted by realized standard deviation give larger estimates of the ex-

pected risk premium and larger t-statistics than either of the other estimates. This fore-

shadows a result in the following section. In periods of unexpectedly high volatility

(meaning when σmt > σ̂mt), realized stock returns are lower than average. These lower

returns receive less weight when 1/σmt is the weight used to estimate the expected risk

premium.

We add here that Moreira and Muir (2017, 2019) produce a novel result by exploiting

this feature of stock returns. They find that the standard mean-variance trade-off weakens

in periods of high volatility. This suggests that investors should time volatility by taking

more risk when volatility is low and taking less risk when volatility is high. They find

that managed portfolios taking less risk when volatility is high produce large alphas, sub-

stantially increase factor Sharpe ratios, and produce large utility gains for mean-variance

investors.

4 Estimating Relations Between Risk-Premiums and Volatil-

ity

French et al. (1987) argue that a positive relation between the expected risk premium and

ex ante predicted volatility induces a negative relation between the excess holding period

return and unexpected volatility. Combining predicted and unpredicted volatility into

one measure of realized volatility obscures the ex ante relation.

We illustrate their argument in Figure 4 with a series of three scatterplots, where the

excess holding period returns are on the y-axis and the estimates of realized, predicted,
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and unpredicted volatility are on the x-axes.

[Figure 4 here]

Figure 4 shows how combining predicted and unpredicted volatility into one realized

volatility measure obscures the positive relation between predicted volatility and the ex-

pected risk premium. Decoupling predicted volatility from realized volatility exposes a

positive relation between the predicted level of volatility and the expected risk premium

and a strong negative relation between the excess holding period return and the unpre-

dicted level of volatility.

4.1 Regressions of Excess Holding Period Returns on ARIMA Forecasts of Volatil-

ity

French et al. (1987) estimate the relation between expected risk premiums and volatility

by regressing excess holding period returns on the predictable components of the stock

market standard deviation or variance

Rmt − R f t = α + βσ̂
p
mt + εt, (11)

where each observation is weighted by predicted volatility, σ̂
p
mt, from the ARIMA model

to account for heteroskedasticity. If β = 0 in (11), the expected risk premium is unrelated

to predicted volatility. If α = 0 and β > 0, the expected risk premium is proportional to

the predicted standard deviation (p = 1) or variance (p = 2) of stock returns.

We replicate FSS Table 4 and report the estimates from regression (11) in Table 4.

[Table 4 here]

We confirm that the estimates from (11) provide little evidence of a relation between ex-

pected risk premiums and predicted volatility. The 1928–84 estimate of β is 0.066 with
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a standard error of 0.139 for the standard deviation specification, and 0.379 with a stan-

dard error of 0.909 for the variance specification. All of the estimates for β are within one

standard error of zero.

French et al. (1987) then estimate regressions measuring the relation between excess

holding period returns and contemporaneous unpredicted changes in market volatility

Rmt − R f t = α + βσ̂
p
mt + γσ

pu
mt + εt, (12)

where σ
pu
mt is unpredicted volatility calculated as the difference between realized volatility

and predicted volatility from the ARIMA model (4). If γ < 0, then there is a volatility

feedback effect.

French et al. (1987) explain the volatility feedback effect as follows.

“Suppose this month’s standard deviation is larger than predicted. Then the

model in Table 1, Panel C, implies that predicted standard deviations will be

revised upward for all future time periods. If the risk premium is positively

related to the predicted standard deviation, the discount rate for future cash

flows will increase. If the cash flows are unaffected, the higher discount rate

reduces both their present value and the current stock price. Thus, a positive

relation between the predicted stock market volatility and the expected risk

premium induces a negative relation between the unpredicted component of

volatility and excess holding period returns.”

Table 4 also reports the estimates from regression (12). We confirm that there is a reli-

ably negative relation between excess holding period returns and the level of unpredicted

volatility. The estimates for γ for the standard deviation specification range from −0.807

to −0.879 with t-statistics from −3.959 to −8.979. The estimates for γ for the variance

specification range from −3.528 to −8.631 with t-statistics from −3.865 to −5.919. This
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confirms the main result in FSS. We confirm that there is a market-wide volatility feed-

back effect where unexpected volatility causes the market to reevaluate its expectation of

future risk premiums and make an immediate adjustment in stock prices.

Regression (12) again provides little direct evidence of a relation between the expected

risk premium and predicted volatility. Six of the eight estimates for β are negative and

none are statistically significant. On the other hand, all of the estimates for α are positive

in (12) and four of the eight are significant. This implies that the expected risk premium is

not proportional to the predicted standard deviation nor to the predicted variance of the

stock market return. This means that the ratio of excess return to volatility does not follow

a constant proportionality and the expected slope of the capital market line conditional

on σ̂mt, Et−1 [(Rmt−R f t)/σ̂mt], is not constant.

Table 4 summarizes the main results on volatility feedback. To make it easy to compare

the current estimates to the original estimates in FSS, we add Table 5, which places our

replication results from regression (12) next to the original results from regression (7) in

FSS Table 4.

[Table 5 here]

Notice that our estimates for γ for the standard deviation and variance specifications

are essentially the same as the original estimates in FSS in terms of size and statistical

significance. This confirms that there is a market-wide volatility feedback effect and that

it extends through 2019.

4.2 GARCH-in-Mean Models

French et al. (1987) calculate their second estimate for predicted volatility as the fitted

values from the variance equation of the GARCH-in-mean model of Engle, Lilien, and

Robins (1987). The GARCH-in-mean extends the GARCH by allowing the conditional
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mean return to be a function of volatility. French et al. (1987) estimate two forms of the

GARCH-in-mean model, one for the standard deviation and one for the variance

Rmt − R f t = α + βσt + εt − θεt−1 (13)

Rmt − R f t = α + βσ2
t + εt − θεt−1, (14)

which is a MA(1) in the mean equation (to account for nonsynchronous trading) plus

volatility. The variance equation is the same GARCH(2, 1) variance equation in (10).

GARCH-in-mean is an attractive alternative to ARIMA because the return and variance

processes are estimated jointly.

With the daily excess holding period returns on the S&P composite portfolio used to

estimate the model, β has the same interpretation in (14) as it does the in the monthly

ARIMA regression (11) with (p = 2) because both return and variance are approximately

proportional to the length of the measurement interval. On the other hand, the estimate

for β in (13) should be about
√

22 times smaller than the monthly estimate in (11) with

(p = 1) because standard deviation is proportional to the square root of the approx-

imately 22-days-per-month measurement interval. The intercept α should be about 22

times smaller than the monthly estimate in (11) because it is an average daily risk pre-

mium in (13) and (14).

We replicate FSS Table 5 and report the GARCH-in-mean estimates for the daily re-

turns in Table 6.

[Table 6 here]

We confirm that there is a positive relation between expected risk premiums and pre-

dicted volatility. The estimated coefficient of predicted volatility, β, for 1928–84 is 0.078,

with a standard error of 0.040, in the standard deviation specification (13) and 2.484, with

a standard error of 0.753, in the variance specification (14).
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We add here that we also calculate White (1982) robust standard errors for the GARCH-

in-mean parameters in addition to the uncorrected errors in FSS. While the estimates are

still positive, with robust instead of uncorrected standard errors, β changes from signifi-

cant to insignificant in the 1953–84 and 1985–2019 subperiods for both the standard devi-

ation and variance specifications. The Nyblom (1989) test for constancy of the GARCH-

in-mean parameters from 1928–84 confirms that the parameters are not constant in the

standard deviation and variance specifications.

4.3 Comparisons of ARIMA and GARCH Models

The ARIMA models in Table 4, which use monthly excess holding period returns, and the

GARCH-in-mean models in Table 6, which use daily data, yield different results vis-a-vis

the risk-return relation, so FSS explore the relation between these two models further.

We replicate FSS Table 6a and report estimates of the GARCH-in-mean models (13)

and (14) using monthly excess holding period returns in Table 7.

[Table 7 here]

The estimates of β in Table 7 are large compared to those in Table 4, although we do not

find any that are more than two standard errors above zero with robust standard errors.

Using the same specification as (11) and (12) in Table 4, FSS estimate

Rmt − R f t = α + βσt + εt (15)

Rmt − R f t = α + βσ2
t + εt, (16)

where, instead of the fitted values from the ARIMA model, σ
p
t represents the fitted values

from the GARCH-in-mean variance equations estimated with monthly data.

We replicate FSS Table 6b and report the estimates from regressions (15) and (16) in
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Table 8.

[Table 8 here]

We confirm that the estimates for β are small in relation to their standard errors for 1928–

84. The estimates for β are negative for 1928–52 and positive and significant for 1953–84.

The estimates for β are positive but not significant for 1985–2019. While these regres-

sions use the GARCH-in-mean estimates of predicted volatilities, they still provide little

evidence of a relation between expected risk premiums and predicted volatility.

As a final comparison of the regression and GARCH-in-mean models, we follow FSS

and create a series of monthly predicted standard deviations from the daily GARCH-in-

mean model in Table 6 by using the fitted GARCH process (10) to forecast σ2
t for each

trading day in the month. We compute implied monthly standard deviation by summing

the squared fitted values within the month and taking the square root of the sum. We

estimate the expected monthly risk premium as the sum of the daily fitted values from

the mean equation of the daily GARCH-in-mean model.

The GARCH-in-mean prediction of the monthly standard deviation is similar to the

ARIMA prediction, σ̂mt (the correlation is 0.874 for 1928–84 and 0.818 for 1928–2019 and

the means are virtually identical). The GARCH-in-mean and ARIMA predictions have

approximately the same correlation with the realized monthly standard deviation σmt

(0.897 and 0.734 for 1928–84 and 0.885 and 0.686 for 1928–2019) and the sample variances

for the GARCH predictions are over one third larger. The two models have similar abili-

ties to predict monthly volatility.13

The behavior of the expected risk premiums implied by the regression and GARCH-

in-mean models is quite different, though. French et al. (1987) plot the monthly expected

risk premium from regression (11) with (p = 1) from Table 4 in Figure 2a and the monthly

13The monthly GARCH-in-mean predictor of the standard deviation has a correlation with σmt of 0.692
for 1928–84 and 0.652 for 1928–2019.
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expected risk premium from the daily GARCH-in-mean model (13) in Figure 2b. To make

the comparison easier, we combine their two figures into one Figure 5.

[Figure 5 here]

The correlation between the two measures is 0.75 from 1928–84 and 0.82 from 1928–2019,

although the predicted risk premiums from the daily GARCH model have a much higher

mean and variance than the predictions from regression (11). (The scale in Figure 5, Panel

A, is from 0 to 1% and in Panel B is from 0 to 10% per month.)

The higher variability of predicted risk premiums in Panel B is caused by two factors:

(i) the greater variability of the predicted standard deviation from the GARCH-in-mean

model and (ii) the larger coefficient of the predicted standard deviation, β, in the GARCH-

in-mean model. The estimate of β from regression (11) when (p = 1) is 0.066 from 1928–84

in Table 4. The comparable estimate of β is 0.078 for the standard deviation specification

of the daily GARCH-in-mean model in Table 6. As discussed, the daily estimate of β in

Table 6 must be multiplied by
√

N ≈ 4.5 to make it comparable to the monthly estimate

in Table 4, so (4.5)(0.078)/(0.066) = 5.3. Although the ARIMA and GARCH-in-mean mod-

els have similar ability to predict volatility, the GARCH-in-mean model implies greater

variability in the expected risk premiums. The mean of the expected risk premiums is

much higher for the GARCH-in-mean model than for the ARIMA model (1.32% versus

0.60% per month for 1928–84 and 1.42% versus 0.63% per month for 1928–2019). The

GARCH-in-mean predictions seem too high because they are more than two times the

mean realized premium of 0.60% reported in Table 3 for 1928–84. French et al. (1987)

conclude that it is likely neither model is entirely adequate for predicting expected risk

premiums.
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5 Analysis of the Results

5.1 Interpreting the Estimated Coefficients

Merton (1980) notes that in a model of capital market equilibrium where a “representa-

tive investor” has constant relative risk aversion, there are conditions under which the

expected market risk premium will be approximately proportional to the predicted vari-

ance of the market return

Et−1(Rmt − R f t) = Cσ̂2
mt. (17)

The parameter C in (17) is the representative investor’s coefficient of relative risk aver-

sion (CRRA). Ignoring intercepts, the CRRA equals β in regression (11) for (p = 2) and in

the GARCH-in-mean model (14).

The estimate of relative risk aversion, β, from regression (11) in Table 4 from 1928–84

is 0.379, although the large standard error of 0.909 does not distinguish this coefficient

from zero. The corresponding GARCH-in-mean estimate of β in Table 6 is 2.484, which is

over three times its robust standard error of 0.753. French et al. (1987) conclude that both

estimates are economically reasonable because they are well within the range of estimates

produced by other studies using different approaches.14

5.2 The Effect of Leverage

A negative intertemporal relation between stock returns and stock return volatility moti-

vates an alternative hypotheses. Many of the firms whose common stocks are in the S&P

composite portfolio have debt. Black (1976) and Christie (1982) suggest that leverage can

induce a negative ex post relation between returns and volatility for common stocks, even

if the volatility and the expected return for the total firm are constant. The leverage effect
14See, for example, Friend and Blume (1975), Hansen and Singleton (1982), and Brown and Gibbons

(1985).
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hypothesis posits that a fall (rise) in stock value increases (decreases) financial leverage,

making future stock returns more (less) volatile.

The basic premise of the leverage effect hypothesis is as follows. Let V be the market

value of the firm and V = D + E, where D is the market value of the debt and E is the

market value of the equity. With risk-free debt, dV = dE and stockholders bear all of the

variation in market value due to changes in the expected cash flows. The stock return as

represented by the percent change in the market value of the equity is then

dE
E

=
dV
V

V
E

=
dV
V

(D + E)
E

=
dV
V

(
1 +

D
E

)
. (18)

With nonnegative D and E, the standard deviation of the stock return is then

σE = σV

(
1 +

D
E

)
. (19)

The change in the standard deviation of the stock return divided by the stock return (the

elasticity of stock return volatility with respect to stock return) is then

∂σE/σE

∂E/E
=

∂σE

∂E
× E

σE
=
−D

D + E
, (20)

where the lower bound is −1.0 if the equity has no value.

French et al. (1987) test if the relation between realized risk premiums and unexpected

volatility is caused only by leverage by estimating

ln (σmt/σmt−1) = α0 + α1 ln (1 + Rmt) + εt, (21)

where σmt is the realized monthly standard deviation of the S&P composite portfolio, cal-

culated from the daily returns, and ln (1 + Rmt) is the continuously compounded return,
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calculated as the sum of the daily continuously compounded returns on that portfolio.

We estimate (21) and confirm that α1 is significant −1.58 from 1928–84, significant

−1.55 from 1928–52, significant −1.68 from 1953–84, and significant −2.36 from 1985–

2019. We confirm that leverage is probably not the sole explanation for the negative rela-

tion between stock returns and volatility.

5.3 Extensions

French et al. (1987) suggest a number of extensions where the focus is on making better

estimates of predicted volatility. They suggest trying the predicted variability of the real

interest rate, the predicted covariance between the stock market return and consump-

tion, and the predicted variability of decile portfolios formed on the basis of firm size as

alternative measures of volatility. They also suggest trying to improve the forecasts by in-

cluding other predictive variables in the models. Examples include the nominal interest

rate, from Fama and Schwert (1977), and the yield spread between long-term low-grade

corporate bonds and short-term Treasury bills, the level of the S&P composite index in

relation to its average, and the average share price of the firms in the smallest quintile of

NYSE firms, from Keim and Stambaugh (1986).

We add here that there are now automatic processes that will select the best-fitting

ARIMA model by trying various combinations of ARIMA(p, d, q). For example, the

Hyndman-Khandakar algorithm of Hyndman and Khandakar (2008) combines unit root

tests and minimization of the Akaike information criterion (AIC) or the Bayesian infor-

mation criterion (BIC) to obtain the best-fitting ARIMA model. The AIC and BIC criterion

reward goodness of fit, but also include a penalty to discourage overfitting.

ARIMA models are also capable of modeling data having a seasonal pattern where,

for example, high values tend to occur in some months and low values tend to occur in
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other months. A seasonal ARIMA is written as

ARIMA (p, d, q)︸ ︷︷ ︸
nonseasonal part

of the model

(P, D, Q)m︸ ︷︷ ︸
seasonal part
of the model

, (22)

where m is the number of observations per year. For monthly data, m = 12. With monthly

data, a value of P = 1 indicates that the model uses the values of σmt−12 to predict the

values of σmt. With P = 2, the model uses the values of σmt−12 and σmt−24 to predict

the values of σmt. A value of Q = 1 indicates that the model uses the values of ut−12 to

predict σmt. The seasonal term, D, is the seasonal difference, for example, when D = 1

the seasonal difference is σmt − σmt−12.

We extend FSS by checking if automatic model selection and allowing for a seasonal

pattern produces better forecasts of predicted market volatility. We use the Hyndman-

Khandakar algorithm to find the best-fitting ARIMA(p, d, q)(P, D, Q)12 model for each

subperiod. Model selection is based on minimizing the AICc, a bias-corrected version of

the AIC.

The ARIMA models selected by minimum AICc are, ARIMA(1, 1, 1)(0, 0, 1)12 with

Box-Cox λ = −0.42 for 1928–84, ARIMA(2, 1, 3) with λ = −0.79 for 1928–52, ARIMA(1,

1, 2) with λ = −0.13 for 1953–84, and ARIMA(2, 1, 1)(1, 0, 1)12 with λ = −0.57 for 1985–

2019. In terms of model accuracy, the root mean square error (RMSE) for the ARIMA(0, 1,

3) models are 0.354 for 1928–84, 0.395 for 1928–52, 0.316 for 1953–84, and 0.400 for 1985–

2019. The corresponding RMSE for the automatic ARIMA models are 0.023, 0.032, 0.013,

and 0.022. Automatic model selection does not produce very different estimates for pre-

dicted volatility, though. The correlations between the predicted standard deviations are

0.996 for 1928–84, 0.973 for 1928–52, 0.985 for 1953–84, and 0.983 for 1985–2019. Substitut-

ing the fitted values from the automatic ARIMA models in regressions (11) and (12) does

not change the main results in a meaningful way.
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6 Conclusions

French et al. (1987) pose a question lying at the heart of the asset pricing literature; what

is the relation between the expected market risk premium, defined as the expected return

on a stock market portfolio minus the risk-free interest rate, and risk, as measured by the

volatility of the stock market? French et al. (1987) then show how higher (lower) than

expected volatility drives up (down) expected risk premiums, leading to an immediate

decrease (increase) in stock value. French et al. (1987) not only establish this relation,

but they also show how it represents a positive relation between conditional volatility

and expected returns through the discount rate channel (equivalent to expected returns).

These findings are significant because most (if not all) of the major multiperiod asset

pricing models predict such a relation.

After careful replication, we confirm that the main results in FSS hold and continue to

hold through 2019. In regressions of market excess returns on the predicted and unpre-

dicted levels of market volatility, we confirm that there is a positive relation between the

expected risk premium on common stocks and the predictable level of volatility, though it

is difficult to discriminate among alternate specifications of this relation. We also confirm

that there is a negative and significant relation between the unpredicted component of

stock market volatility and excess holding period returns. In sum, we confirm that there

is a market-wide volatility feedback effect through 2019. We also confirm that the mag-

nitude of this effect is too large to be attributed to the leverage effect discussed in Black

(1976) and Christie (1982).
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Table 2: Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Models
for Daily Excess Holding Period Returns to the Standard & Poor’s Composite Portfolio.a

Rmt − R f t = α + εt − θεt−1 (9)

σ2
t = a + bσ2

t−1 + c1ε2
t−1 + c2ε2

t−2 (10)

Description: This Table summarizes the results from the GARCH regression (9) and (10).
Interpretation: Conditional volatility is autocorrelated and predictable.

GARCH model Nyblom test
equations α× 103 a× 103 b c1 c2 θ for stability

(A) January 1928 to December 1984, T = 15,370

GARCH 0.405 0.001 0.908 0.089 0.000 0.157 1,209.7
(9), (10) (0.065) (0.000) (0.006) (0.008) (0.005) (0.009)

[0.097] [0.003] [0.069] [0.013] [0.073] [0.012]

(B) January 1928 to December 1952, T = 7,327

GARCH 0.679 0.001 0.894 0.103 0.000 0.089
(9), (10) (0.111) (0.001) (0.014) (0.013) (0.019) (0.013)

[0.139] [0.010] [0.141] [0.021] [0.137] [0.015]

(C) January 1953 to December 1984, T = 8,043

GARCH 0.298 0.001 0.907 0.086 0.000 0.213
(9), (10) (0.081) (0.000) (0.007) (0.011) (0.008) (0.012)

[0.123] [0.002] [0.068] [0.018] [0.073] [0.015]

(D) January 1985 to December 2019, T = 8,822

GARCH 0.544 0.002 0.879 0.094 0.011 −0.014
(9), (10) (0.082) (0.001) (0.014) (0.011) (0.018) (0.012)

[0.089] [0.009] [0.128] [0.033] [0.121] [0.011]
a Rmt − R f t is the daily excess holding period return to the Standard & Poor’s compos-
ite portfolio (the percentage price change minus the risk-free interest rate). Nonlinear
optimization techniques are used to calculate maximum likelihood estimates. Asymp-
totic standard errors are in parentheses under the coefficient estimates. The numbers in
brackets are robust standard errors calculated using the method of White (1982).
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Table 3: Means, Standard Deviations, and Skewness of the
Monthly CRSP Value-Weighted Market Excess Holding Period Re-
turns (t-statistics in parentheses).a

Description: This Table summarizes descriptive statistics for
monthly risk premiums. Means are calculated by ordinary least
squares and weighted least squares (WLS).
Interpretation: Monthly risk premiums are heteroskedastic. In
periods of unexpectedly high volatility, realized stock returns are
lower than average.

WLS WLS
Period Mean meanb meanc Std. dev. Skewness

1928–84 0.0060 0.0091 0.0055 0.0586 0.49d

(0.002) (0.002) (0.002)

1928–52 0.0075 0.0120 0.0075 0.0753 0.49d

(0.004) (0.003) (0.004)

1953–84 0.0048 0.0074 0.0045 0.0411 −0.05
(0.002) (0.002) (0.002)

1985–2019 0.0068 0.0101 0.0069 0.0413 −0.92d

(0.002) (0.002) (0.002)
a The one-month risk-free rate is subtracted from the CRSP value-
weighted stock market return to create an excess holding period
return.

b Sample mean estimated by weighted least squares, where the
standard deviation of the Standard & Poor’s composite portfolio
estimated from the days within the month, σmt, is used to weight
the observations.

c Sample mean estimated by weighted least squares, where the
predicted standard deviation of the Standard & Poor’s composite
portfolio estimated from the ARIMA model in Table 1, Panel C, is
used to weight the observations.

d Greater than the 0.95 fractile of the sampling distribution under
the hypothesis of a stationary, serially uncorrelated normal distri-
bution.
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Table 4: Weighted Least Squares Regressions of Monthly CRSP Value-Weighted Excess Holding Pe-
riod Returns against the Predictable and Unpredictable Components of the Standard Deviations or
Variances of Stock Market Returns.a

Rmt − R f t = α + βσ̂
p
mt + εt (11)

Rmt − R f t = α + βσ̂
p
mt + γσ

pu
mt + εt (12)

Description: This Table summarizes the results from regressions (11) and (12).
Interpretation: There is a strong negative relation between unpredicted volatility and excess returns.

Volatility Eq. (11) Eq. (12)

measure α β α β γ S(ε) R2 Q(12) SR(ε)

(A) January 1928 to December 1984, T = 684
σmt 0.0028 0.066 0.0050 0.016 −0.830 0.0568 0.106 14.4 9.18

(0.0045) (0.102) (0.0042) (0.097) (0.093)
[0.0054] [0.139] [0.0055] [0.143] [0.127]

σ2
mt 0.0047 0.379 0.0054 0.187 −3.973 0.0579 0.098 16.5 6.49

(0.0022) (0.938) (0.0021) (0.892) (0.463)
[0.0022] [0.909] [0.0021] [0.938] [0.795]

(B) January 1928 to December 1952, T = 300
σmt 0.0076 −0.001 0.0107 −0.058 −0.807 0.0733 0.122 14.8 8.11

(0.0086) (0.154) (0.0081) (0.145) (0.125)
[0.0099] [0.202] [0.0100] [0.210] [0.158]

σ2
mt 0.0089 −0.250 0.0108 −0.649 −3.528 0.0748 0.154 9.7 6.57

(0.0043) (1.103) (0.0039) (1.018) (0.479)
[0.0043] [1.086] [0.0040] [1.128] [0.596]

(C) January 1953 to December 1984, T = 384
σmt 0.0012 0.096 0.0049 −0.012 −0.879 0.0399 0.079 14.3 6.29

(0.0064) (0.177) (0.0062) (0.171) (0.154)
[0.0063] [0.183] [0.0064] [0.194] [0.222]

σ2
mt 0.0035 0.759 0.0050 −0.350 −8.631 0.0408 0.076 11.7 6.22

(0.0032) (2.213) (0.0031) (2.140) (1.548)
[0.0031] [2.020] [0.0030] [2.159] [2.233]

(D) January 1985 to December 2019, T = 420
σmt 0.0081 −0.033 0.0123 −0.141 −0.862 0.0369 0.195 18.9 6.34

(0.0054) (0.136) (0.0049) (0.123) (0.086)
[0.0052] [0.144] [0.0049] [0.134] [0.096]

σ2
mt 0.0079 −0.460 0.0086 −0.697 −4.440 0.0370 0.172 15.8 6.36

(0.0027) (1.424) (0.0024) (1.300) (0.478)
[0.0027] [1.371] [0.0025] [1.246] [0.772]

a σ̂mt is the prediction and σu
mt is the prediction error for the estimate of the monthly stock market

standard deviation from the ARIMA model in Table 1, Panel C. σ̂2
mt and σ2u

mt are the prediction and
prediction error for the variance of stock returns. The estimated time series model for σmt is reported
in Table 1, Panel C. Standard errors are in parentheses below the coefficient estimates. The numbers
in brackets are standard errors based on the White (1980) consistent heteroskedasticity correction.
S(ε) is the standard deviation of the residuals, R2 is the coefficient of determination, Q(12), is the
Ljung and Box (1978) statistic for 12 lags of the residual autocorrelation function, and SR(ε) is the
studentized range of the residuals. These regressions are estimated using weighted least squares,
where the predicted standard deviation of the S&P composite portfolio σ̂mt is used to standardize each
observation. R2, Q(12) and SR(ε) are based on the weighted residuals, but the standard deviation of
the residuals is based on the unweighted residuals (in the same units as the original data).
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Table 5: Comparison of Weighted Least Squares Regressions of Monthly CRSP
Value-Weighted Excess Holding Period Returns against the Predictable and
Unpredictable Components of the Standard Deviations or Variances of Stock
Market Returns.a

Rmt − R f t = α + βσ̂
p
mt + γσ

pu
mt + εt (12)

Description: This Table compares the current estimates from regression (12)
to the original estimates from regression (7) in FSS.
Interpretation: The main results in FSS hold and continue to hold through
2019. The relation between unpredicted volatility and excess returns is nega-
tive and significant. There is a market-wide volatility feedback effect.

Volatility Current estimates Original estimates

measure α β γ α β γ

(A) January 1928 to December 1984, T = 684
σmt 0.0050 0.016 −0.830 0.0077 −0.050 −1.010

(0.0042) (0.097) (0.093) (0.0039) (0.107) (0.092)
[0.0055] [0.143] [0.127] [0.0039] [0.105] [0.111]

σ2
mt 0.0054 0.187 −3.973 0.0057 0.088 −4.438

(0.0021) (0.892) (0.463) (0.0020) (0.889) (0.496)
[0.0021] [0.938] [0.795] [0.0021] [0.930] [0.886]

(B) January 1928 to December 1952, T = 300
σmt 0.0107 −0.058 −0.807 0.0199 −0.230 −1.007

(0.0081) (0.145) (0.125) (0.0076) (0.163) (0.115)
[0.0100] [0.210] [0.158] [0.0081] [0.175] [0.131]

σ2
mt 0.0108 −0.649 −3.528 0.0114 −0.671 −3.985

(0.0039) (1.018) (0.479) (0.0038) (1.042) (0.515)
[0.0040] [1.128] [0.596] [0.0039] [1.140] [0.707]

(C) January 1953 to December 1984, T = 384
σmt 0.0049 −0.012 −0.879 0.0068 −0.071 −1.045

(0.0062) (0.171) (0.154) (0.0056) (0.172) (0.152)
[0.0064] [0.194] [0.222] [0.0051] [0.161] [0.205]

σ2
mt 0.0050 −0.350 −8.631 0.0046 −0.349 −9.075

(0.0031) (2.140) (1.548) (0.0031) (2.118) (1.571)
[0.0030] [2.159] [2.233] [0.0031] [2.186] [2.382]

(D) January 1985 to December 2019, T = 420
σmt 0.0123 −0.141 −0.862

(0.0049) (0.123) (0.086)
[0.0049] [0.134] [0.096]

σ2
mt 0.0086 −0.697 −4.440

(0.0024) (1.300) (0.478)
[0.0025] [1.246] [0.772]

a σ̂mt is the prediction and σu
mt is the prediction error for the estimate of the

monthly stock market standard deviation from the ARIMA model in Table 1,
Panel C. σ̂2

mt and σ2u
mt are the prediction and prediction error for the variance

of stock returns. The estimated time series model for σmt is reported in Table
1, Panel C. Standard errors are in parentheses below the coefficient estimates.
The numbers in brackets are standard errors based on the White (1980) consis-
tent heteroskedasticity correction.

43



Table 6: Generalized Autoregressive Conditional Heteroskedasticity-in-Mean (GARCH-in-Mean) Models
for Daily Excess Holding Period Returns to the Standard & Poor’s Composite Portfolio.a

Rmt − R f t = α + βσt + εt − θεt−1 (13)

Rmt − R f t = α + βσ2
t + εt − θεt−1 (14)

σ2
t = a + bσ2

t−1 + c1ε2
t−1 + c2ε2

t−2 (10)

Description: This Table summarizes the results from GARCH-in-mean regressions with daily data.
Interpretation: The relation between predicted volatility and excess returns is positive.

GARCH-in-mean Nyblom test
equations α× 103 β a× 103 b c1 c2 θ for stability

(A) January 1928 to December 1984, T = 15,370

Std. dev. −0.111 0.078 0.001 0.908 0.090 0.000 0.157 1,224.6
(13), (10) (0.168) (0.023) (0.000) (0.006) (0.008) (0.005) (0.009)

[0.343] [0.040] [0.003] [0.067] [0.013] [0.072] [0.012]

Variance 0.276 2.484 0.001 0.908 0.090 0.000 0.156 1,209.4
(14), (10) (0.080) (0.921) (0.000) (0.003) (0.009) (0.003) (0.009)

[0.100] [0.753] [0.001] [0.021] [0.080] [0.057] [0.015]

(B) January 1928 to December 1952, T = 7,327

Std. dev. 0.287 0.048 0.001 0.893 0.103 0.000 0.090
(13), (10) (0.278) (0.031) (0.001) (0.014) (0.013) (0.019) (0.013)

[0.362] [0.035] [0.009] [0.133] [0.021] [0.130] [0.015]

Variance 0.564 1.435 0.001 0.893 0.103 0.000 0.090
(14), (10) (0.136) (0.990) (0.001) (0.014) (0.013) (0.019) (0.013)

[0.151] [0.814] [0.009] [0.131] [0.021] [0.127] [0.015]

(C) January 1953 to December 1984, T = 8,043

Std. dev. −0.297 0.101 0.001 0.907 0.086 0.000 0.213
(13), (10) (0.257) (0.042) (0.000) (0.007) (0.011) (0.008) (0.012)

[0.588] [0.082] [0.002] [0.063] [0.018] [0.070] [0.015]

Variance 0.057 6.286 0.001 0.906 0.086 0.000 0.212
(14), (10) (0.128) (2.584) (0.000) (0.007) (0.011) (0.009) (0.012)

[0.300] [5.328] [0.002] [0.066] [0.019] [0.068] [0.016]

(D) January 1985 to December 2019, T = 8,822

Std. dev. −0.257 0.104 0.002 0.878 0.093 0.014 −0.014
(13), (10) (0.274) (0.034) (0.001) (0.013) (0.011) (0.017) (0.012)

[0.703] [0.083] [0.007] [0.106] [0.032] [0.098] [0.011]

Variance 0.309 3.580 0.002 0.878 0.094 0.012 −0.014
(14), (10) (0.116) (1.243) (0.001) (0.014) (0.011) (0.017) (0.012)

[0.177] [1.867] [0.008] [0.122] [0.033] [0.114] [0.011]
a Rmt − R f t is the daily excess holding period return to the Standard & Poor’s composite portfolio (the
percentage price change minus the risk-free interest rate). Nonlinear optimization techniques are used to
calculate maximum likelihood estimates. Asymptotic standard errors are in parentheses under the coeffi-
cient estimates. The numbers in brackets are robust standard errors calculated using the method of White
(1982).
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Table 7: Comparison of ARIMA with GARCH Predictions of Stock Market Volatility and Their Relations
to Monthly CRSP Value-Weighted Excess Holding Period Returns. GARCH-in-Mean Estimates Using
Monthly Excess Holding Period Returns.a

Rmt − R f t = α + βσt + εt − θεt−1 (13)

Rmt − R f t = α + βσ2
t + εt − θεt−1 (14)

σ2
t = a + bσ2

t−1 + c1ε2
t−1 + c2ε2

t−2 (10)

Description: This Table summarizes the results from GARCH-in-mean regressions with monthly data.
Interpretation: The relation between predicted volatility and excess returns is positive.

GARCH-in-mean Nyblom test
equations α β a× 103 b c1 c2 θ for stability

(A) January 1928 to December 1984, T = 684

Std. dev. −0.0019 0.215 0.082 0.811 0.059 0.109 0.070 1.5
(13), (10) (0.0059) (0.132) (0.034) (0.033) (0.041) (0.058) (0.038)

[0.0064] [0.145] [0.036] [0.040] [0.038] [0.058] [0.040]

Variance 0.0041 1.618 0.085 0.809 0.062 0.106 0.069 1.4
(14), (10) (0.0026) (0.964) (0.034) (0.034) (0.041) (0.059) (0.038)

[0.0027] [1.019] [0.038] [0.041] [0.038] [0.058] [0.040]

(B) January 1928 to December 1952, T = 300

Std. dev. 0.0110 0.002 0.062 0.841 0.134 0.022 0.077
(13), (10) (0.0082) (0.159) (0.056) (0.037) (0.082) (0.094) (0.060)

[0.0073] [0.148] [0.055] [0.046] [0.070] [0.088] [0.077]

Variance 0.0097 0.517 0.064 0.840 0.139 0.018 0.079
(14), (10) (0.0041) (1.012) (0.057) (0.039) (0.086) (0.098) (0.060)

[0.0038] [0.902] [0.056] [0.047] [0.073] [0.093] [0.075]

(C) January 1953 to December 1984, T = 384

Std. dev. −0.0132 0.481 0.165 0.737 0.000 0.176 0.054
(13), (10) (0.0099) (0.252) (0.090) (0.076) (0.050) (0.080) (0.048)

[0.0103] [0.248] [0.079] [0.056] [0.056] [0.074] [0.044]

Variance −0.0049 6.601 0.163 0.746 0.000 0.166 0.052
(14), (10) (0.0055) (3.329) (0.087) (0.073) (0.049) (0.077) (0.048)

[0.0065] [3.565] [0.078] [0.052] [0.054] [0.074] [0.044]

(D) January 1985 to December 2019, T = 420

Std. dev. 0.0030 0.125 0.067 0.823 0.152 0.000 −0.020
(13), (10) (0.0060) (0.168) (0.037) (0.047) (0.063) (0.075) (0.057)

[0.0060] [0.176] [0.052] [0.070] [0.077] [0.084] [0.071]

Variance 0.0053 1.540 0.067 0.824 0.152 0.000 −0.019
(14), (10) (0.0029) (1.800) (0.036) (0.046) (0.063) (0.074) (0.057)

[0.0029] [1.808] [0.051] [0.069] [0.077] [0.080] [0.070]
a The statistical procedure used in Table 7 is the same as in Table 6, except that monthly excess holding
period returns to the CRSP value-weighted portfolio are used instead of the daily excess holding period
returns to the S&P composite portfolio. Asymptotic standard errors are in parentheses under the coefficient
estimates. The numbers in brackets are robust standard errors calculated using the method of White (1982).
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Table 8: Comparison of ARIMA with GARCH Predictions of Stock Market
Volatility and Their Relations to Monthly CRSP Value-Weighted Excess Hold-
ing Period Returns. Weighted Least Squares Regressions of Monthly CRSP
Value-Weighted Excess Holding Period Returns Against the Predicted Stan-
dard Deviation or Variance of Stock Returns from the Monthly GARCH-in-
Mean Model.a

Rmt − R f t = α + βσt + εt (15)

Rmt − R f t = α + βσ2
mt + εt (16)

Description: This Table summarizes the results from regressions (15) and (16).
Interpretation: The relation between predicted volatility and risk premiums
is unreliable.

Volatility measure α β S(ε) R2 Q(12) SR(ε)

(A) January 1928 to December 1984, T = 684

Monthly GARCH 0.0034 0.049 0.0586 0.0003 21.4 8.63
Std. dev. (0.0050) (0.103)

[0.0063] [0.145]

Monthly GARCH 0.0048 0.341 0.0585 0.0002 20.8 6.66
Variance (0.0024) (0.957)

[0.0024] [0.940]

(B) January 1928 to December 1952, T = 300

Monthly GARCH 0.0127 −0.076 0.0755 0.0011 16.1 7.73
Std. dev. (0.0083) (0.135)

[0.0090] [0.169]

Monthly GARCH 0.0120 −0.750 0.0758 0.0018 13.6 6.63
Variance (0.0041) (1.015)

[0.0040] [0.982]

(C) January 1953 to December 1984, T = 384

Monthly GARCH −0.0170 0.535 0.0407 0.0117 17.8 6.08
Std. dev. (0.0100) (0.251)

[0.0098] [0.253]

Monthly GARCH −0.0055 5.951 0.0407 0.0090 16.9 5.90
Variance (0.0051) (3.194)

[0.0046] [2.826]

(D) January 1985 to December 2019, T = 420

Monthly GARCH 0.0007 0.148 0.0412 0.0018 5.8 8.34
Std. dev. (0.0066) (0.168)

[0.0062] [0.167]

Monthly GARCH 0.0043 1.337 0.0412 0.0010 5.0 8.09
Variance (0.0033) (2.109)

[0.0029] [1.794]
a The statistical procedure used in this Table is the same as in Table 4, except
that the predicted standard deviation of the CRSP value-weighted return, σt,
estimated in Table 7, is used to standardize each observation, instead of the
prediction σ̂mt from the ARIMA model in Table 1, Panel C. See the footnotes to
Table 4 and Table 6 for more detailed descriptions of the statistical procedures.
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Figure 1: Monthly percent standard deviations of the returns to the Standard & Poor’s
composite portfolio, σmt, estimated from returns for days i within the month t, rit, 1928–

2019.

σmt =

{
Nt

∑
i=1

r2
it + 2

Nt−1

∑
i=1

ritri+1,t

}1/2

(2)
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Figure 2: Monthly first difference in ln σmt of the returns to the Standard & Poor’s com-
posite portfolio, estimated from returns for days i within the month t, rit, 1928–2019.

σmt =

{
Nt

∑
i=1

r2
it + 2

Nt−1

∑
i=1

ritri+1,t

}1/2

(2)
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Figure 3: (A) realized, σmt, and (B) predicted, σ̂mt, monthly percent standard deviations
of the returns to the Standard & Poor’s composite portfolio estimated from the ARIMA

model in Table 1, Panel C, 1928–2019.
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Figure 4: Scatterplots and univariate regressions of monthly risk premiums Rmt − R f t
against monthly (A) realized, (B) predicted, and (C) unpredicted standard deviation. Un-
predicted standard deviation is the difference between realized standard deviation from

(2) and predicted standard deviation from (5), 1928–2019.
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Figure 5: Predicted percent monthly risk premium to the Standard & Poor’s composite
portfolio from the regression on ARIMA predictions of the standard deviation, σ̂mt, in
Table 4, and from the daily GARCH-in-mean model for the standard deviation, σt, in

Table 6, 1928–2019.
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A Appendix

Why do Other Studies Cite FSS and Which Parts of FSS Receive the Most Atten-

tion?

According to the Web of Science (WOS) database, FSS is cited in 1,189 studies published

through June 2020. In this appendix, we extend our replication by text mining these

studies for information on how others cite FSS and which parts of FSS receive the most

attention.

Ready for use on WOS are electronic versions of the titles and abstracts for 1,189 pub-

lished studies citing FSS through June 2020. Some have no abstract, so there are 1,189

titles and 1,089 abstracts available to read electronically. As with raw numeric data, raw

textual data must also be cleaned before it can be read and analyzed. Starting with the

raw textual data from WOS, we convert each word to lowercase so the same word with

different capitalization counts the same. We then remove numbers and punctuation ex-

cept for hyphens and apostrophes. We then remove words like the, and, or, and is. Known

as stop words, these words are generally not informative about the meaning and con-

tent of textual data.15 After making these changes, there are 8,211 words in the titles and

82,140 words in the abstracts usable for text analysis.

With the clean textual data, we begin by counting the number of times each word is

used in the titles and abstracts. This type of word frequency analysis helps us to discover

the main focus of the studies that cite FSS.

Figure 6 is a plot of the top-10 words in the (A) titles and (B) abstracts of the citing

study texts.

15The complete list of stop words is given in the online appendix for Lewis, Yang, Rose, and Li (2004).
The current Web address is http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a11-smart-
stop-list/english.stop. We also remove the word elsevier, which appears in many of the abstracts as part of
the copyright notice.

52



[Figure 6 here]

We find that the most frequent word in the titles and abstracts is volatility. Volatility is

used 443 times in the titles and 2,288 times in the abstracts. The top-five words in each

of the titles and abstracts are volatility, market, returns, stock, and risk. These are the main

focus of the studies that cite FSS.

To better appreciate the broader context in which the citing studies focus on volatility,

we count every occurrence of volatility along with one word used immediately before and

after it. Table 9 reports the results.

[Table 9 here]

We find that the most frequently used words before volatility include market and return.

Market is used before volatility 42 times in the titles and 145 times in the abstracts, while

return is used before volatility 25 times in the titles and 117 times in the abstracts. Other

frequently used words before volatility include realized, conditional, and stochastic.

Closer examination confirms that studies cite FSS for realized volatility and for the

stochastic properties of volatility. Studies citing FSS for realized volatility include Schwert

(1989b), Bushee and Noe (2000), Campbell, Lettau, Malkiel, and Xu (2001), Alizadeh,

Brandt, and Diebold (2002), Antweiler and Frank (2004), Jiang and Tian (2005), Bandi

and Russell (2006), Bekaert, Harvey, and Lundblad (2007), and Jondeau, Zhang, and Zhu

(2019). Andersen, Bollerslev, Diebold, and Labys (2001a) cite FSS when they construct

new model-free estimates of daily exchange rate volatility, while formal justification for

the realized volatility calculation in FSS is given in Andersen, Bollerslev, Diebold, and

Ebens (2001b).

Studies also cite FSS for the stochastic properties of volatility. Those who cite FSS

for heteroskedasticity include Fama and French (1988), Lo and MacKinlay (1988), Nelson

(1990), Hsieh (1991), Hodrick (1992), McQueen and Roley (1993), Saunders (1993), Flem-
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ing, Ostdiek, and Whaley (1996), Kandel and Stambaugh (1996), Edmans, Garcı́a, and

Norli (2007), and Liu (2007). Those who cite FSS for volatility persistence and predictabil-

ity include Schwert (1989a), Bollerslev, Chou, and Kroner (1992), Easley and O’Hara

(1992), Cai (1994), Christensen and Prabhala (1998), and Andersen, Bollerslev, Diebold,

and Labys (2003).

The most frequently used words after volatility include feedback and models, suggesting

that studies cite FSS for volatility feedback and to motivate conditional volatility models.

Closer examination confirms this result.

Those who cite FSS for the theory of volatility feedback include Veronesi (1999), Chen,

Hong, and Stein (2001), Hong and Stein (2003), Bansal et al. (2004), Hutton, Marcus, and

Tehranian (2009), Kothari, Li, and Short (2009), Bibinger, Neely, and Winkelmann (2019),

and Pyun (2019). Those who cite FSS for evidence on volatility feedback include Fama

(1990), Chen (1991), Bessembinder and Seguin (1993), Haugen and Baker (1996), Allen

and Karjalainen (1999), Harvey and Siddique (1999), Ang and Chen (2002), Lee, Jiang,

and Indro (2002), Bakshi and Kapadia (2003), Lewellen and Nagel (2006), Drienko, Smith,

and Reibnitz (2019), Jang and Kang (2019), and Kilic and Shaliastovich (2019). Those

who compare their results on volatility feedback to the results in FSS include Harvey

(1989), Baillie and DeGennaro (1990), Shanken (1990), Brock, Lakonishok, and LeBaron

(1992), Goyal and Santa-Clara (2003), Ludvigson and Ng (2007), Kottimukkalur (2019),

and Moreira et al. (2019).

Studies cite FSS for volatility models and for volatility modeling for two main rea-

sons. The first is to justify volatility as an explanatory variable in their models. Among

those who cite FSS to justify volatility as a variable in their models are Cutler, Poterba,

and Summers (1989), Ferson et al. (1993), Andrei, Hasler, and Jeanneret (2019), and Jiang,

Lee, Martin, and Zhou (2019). The second is to motivate conditional volatility models like

ARCH and GARCH. Among those who cite FSS to motivate ARCH and GARCH models
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are Hamao, Masulis, and Ng (1990), Lamoureux and Lastrapes (1990), Pagan and Schw-

ert (1990), Chan, Chan, and Karolyi (1991), Nelson (1991), Tauchen and Hussey (1991),

Nelson and Cao (1992), and Fu (2009). Others cite FSS when they extend and improve

on ARCH and GARCH. These include Engle, Ng, and Rothschild (1990), Campbell et al.

(1992), Hentschel (1995), and Engle (2002). Others compare the results from their con-

ditional volatility models to those in FSS including Engle and González-Rivera (1991),

Ghysels, Santa-Clara, and Valkanov (2005), and Yu and Yuan (2011).

Given that FSS is about “expected stock returns” and “volatility,” it would be interest-

ing to know if the frequency of volatility and return in the titles and abstracts has evolved

through time. To see how the use of these terms has evolved, we line up the titles and

abstracts by publication date and divide them into 10 equally numbered groups. Because

there are 1,189 titles and 1,089 abstracts, equally numbered means that there are 119 ti-

tles in the first nine groups and 118 in the 10th group and 109 abstracts in the first nine

groups and 108 in the 10th group. For completeness, we count risk and variance along

with volatility and returns along with return.

Figure 7 is a plot of the relative frequency of volatility and return by publication date

group.

[Figure 7 here]

We find that studies cite FSS more for volatility than for returns, though there was not

as much focus on volatility immediately after publication as there later turned out to be.

There is a noticeable increase in the frequency of volatility in the first few groups of citing

studies. The frequency of volatility in the titles increases from 55 in the first group to 70 in

the fourth group. The frequency of volatility in the abstracts increases from 244 in the first

group to 444 in the third group.
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Table 9: Top-10 Words Before and After volatility
Description: This Table gives the top-10 most fre-
quently used words before and after volatility in
1,189 citing study titles (A) and 1,089 citing study
abstracts (B) through June 2020.
Interpretation: The most frequently used words
before and after volatility indicate the broader con-
text in which the citing studies focus on the topic of
volatility.

(A) Titles

Before N Keyword After N

market 42 volatility evidence 15
stochastic 26 models 14
return 25 spillovers 13
implied 23 index 12
asymmetric 18 model 10
idiosyncratic 14 risk 10
returns 13 stock 10
price 12 feedback 7
realized 11 empirical 6
conditional 10 persistence 6

(B) Abstracts

Before N Keyword After N

market 145 volatility index 61
return 117 feedback 60
implied 91 risk 57
stochastic 90 model 45
realized 79 models 43
conditional 75 stock 41
asymmetric 68 persistence 36
idiosyncratic 66 spillovers 30
returns 64 spillover 26
price 44 process 24
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Figure 6: Frequency of the top-10 words used in 1,189 citing study (A) titles and 1,089
citing study (B) abstracts through June 2020.
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Figure 7: Frequency of volatility and return by publication date group in 1,189 citing study
(A) titles and 1,089 citing study (B) abstracts through June 2020. We form the publication
date groups by lining up the titles and abstracts by publication date and then dividing

them into 10 approximately equally numbered groups.
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B Appendix

R Computer Code

Below are the major segments of the R computer code we use for the replication. Daily

data are held as xts objects from the xts package and monthly data are held as ts ob-

jects. The ARIMA functions are from the forecast package and the GARCH functions

are from the rugarch package. Linear models with ts objects are estimated using the

dynlm package to preserve time series attributes.

#Calculate realized monthly market volatility from daily returns

equation_2 <- function(r) {

sum(r^2) + 2 * sum(r * lag(r, k = -1), na.rm = TRUE)

}

#Calculate ARIMA model and predicted volatility by back-transforming

equation_3 <- function(log_sigma) {

Arima(log_sigma, order = c(0, 1, 3), include.constant = TRUE, lambda = NULL)

}

regression_3 <- lapply(log_realized_sigma, equation_3)

fitted_values_3 <- lapply(regression_3, fitted)

residuals_3 <- lapply(regression_3, residuals)

equation_4a <- function(fitted_values, residuals) {

exp(fitted_values + 0.5 * var(residuals))

}

equation_4b <- function(fitted_values, residuals) {

exp(2 * fitted_values + 2 * var(residuals))

}

predicted_sigma_arima <- mapply(equation_4a, fitted_values_3, residuals_3)
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predicted_sigma_squared_arima <- mapply(equation_4b, fitted_values_3, residuals_3)

#GARCH model and GARCH-in-mean models

equation_5c_5e <- function(excess_returns) {

ugarchfit(

spec = ugarchspec(

mean.model = list(armaOrder = c(0, 1)),

variance.model = list(model = "sGARCH", garchOrder = c(2, 1))

),

data = excess_returns

)

}

equation_8a_5e <- function(excess_returns) {

ugarchfit(

spec = ugarchspec(

mean.model = list(armaOrder = c(0, 1), archm = TRUE, archpow = 1),

variance.model = list(model = "sGARCH", garchOrder = c(2, 1))

),

data = excess_returns

)

}

equation_8b_5e <- function(excess_returns) {

ugarchfit(

spec = ugarchspec(

mean.model = list(armaOrder = c(0, 1), archm = TRUE, archpow = 2),

variance.model = list(model = "sGARCH", garchOrder = c(2, 1))

),

data = excess_returns

)

}

#Weighted least squares

equation_mean_wls <- function(excess_returns, sigma) {

dynlm(excess_returns ~ 1, weights = 1 / sigma)

}

#Linear models

equation_6 <- function(excess_returns, predicted_sigma_p) {

dynlm(excess_returns ~ predicted_sigma_p, weights = 1 / predicted_sigma_p)

}
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equation_7 <- function(excess_returns, predicted_sigma_p, realized_sigma_p) {

dynlm(excess_returns ~ predicted_sigma_p +

I(realized_sigma_p - predicted_sigma_p),

weights = 1 / predicted_sigma_p)

}

equation_10 <- function(excess_returns, predicted_sigma_p) {

dynlm(excess_returns ~ predicted_sigma_p, weights = 1 / predicted_sigma_p)

}

#Automatic ARIMA model selection

equation_3a <- function(sigma) {

auto.arima(sigma, ic = "aicc", stepwise = FALSE,

approximation = FALSE, lambda = "auto")

}

61


