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ABSTRACT

This paper introduces a robust and easy-to-implement one-pass market-
beta estimator. It only requires first winsorizing daily stock rates of
return at −2 and +4 times the contemporaneous market rate of return.
In predicting future market-betas, this “slope-winsorized” beta estima-
tor predicts future betas better not only than OLS betas, Bloomberg
betas (ubiquitous on financial websites), and Vasicek (1973) betas, but
also published estimators that require intra-day data, super-computers,
or financial statements. Moreover, using weighted-least squares to
exponentially decay the weight of aged return observations (with a
half-life of about four months) further improves the estimates.
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This paper introduces a new estimator for the unknown true market beta (βi) of
an individual stock i,

βi =
cov(r̃i , r̃m)

var(r̃m)
, (1)

where r̃ indicates the (excess) rate of return and m indicates the market.
This new beta estimator is based on an easy-to-implement single-pass formula.

It only requires winsorizing historical returns, as motivated by the linear relation-
ship of the market model itself (r̃i = αi + βi · r̃m + ε̃). On a daily basis, αi should
be so small that it can be ignored, leaving only βi · r̃m for guidance. When an
observed stock rate of return ri,t is too far from the observed simultaneous market
rate of return rm,t on the same day—specifically beyond what is implied by a beta
of 1± 3 (i.e., −2·rm,t to +4·rm,t , where t is a day index)—then this rate of return
is winsorized. A return that is further from these bounds is more plausibly (but
not certainly) an outlier.

For example, if the market rate of return on a particular day is +5%, the firm’s
rate of return on this day is winsorized at −10 and +20%. If the market rate of
return is –5%, the firm’s rate of return is winsorized at +10 and −20% instead.
The standard OLS market-model regression using these winsorized rates of returns
then gives the new estimator of beta. Because the winsorization threshold depends
on the market’s rate of return itself, I call this estimator a slope-winsorized beta
estimator, bsw.

Despite its ease of implementation, in predicting future OLS market-betas,
bsw outperforms all other prominent estimators that I am aware of. (The details
will be explained in a moment.) These alternative beta estimators include not
only the OLS estimator itself, but also its Bloomberg (formerly Merrill-Lynch)
variant, as well as the Bayesian Vasicek (1973) estimator and the Dimson (1979)
estimator. bsw also outperforms estimators that require intra-day data (Ait-Sahalia
et al., 2014), supercomputer-intensive calculations (Martin and Simin, 2003), or
financial statement information (Cosemans et al., 2016). The superior performance
appears among the largest 1,000 stocks, 2,000 stocks, 3,000 stocks, or all stocks.
It appears in samples beginning in 1926 or 1973, or for that matter in almost
every year in the sample. It appears when the predicted future OLS betas are
themselves calculated with daily or monthly stock returns. It appears when the
predicted future OLS betas are measured over one month, one year, five years, or
ten years. Indeed, I am unaware of reasonable samples where it does not appear.

Furthermore, bsw also predicts not only the future OLS market-beta better
than alternative estimators, but it also predicts future realized estimates of most
alternative beta estimators better than their historical estimates themselves.

Furthermore, an even better and still one-pass version uses weighted-least
squares (WLS) instead of OLS to decay the influence of stock returns (in the market
model) with age. This beta slope-winsorized aged (bswa) uses a decay parameter of



Simply Better Market Betas 39

2/252 per trading day, which suggests a half-life of relevance of about 90 trading
days (four months).

Both the winsorization and age decay parameters (±3.0 on the winsorization
[around the mean beta of 1.0] and 90 trading days on the age decay) are low-
dimensional, static, and robust. The parameters are not altered per stock, per time
unit, per stock-time unit, or per other firm attributes. Instead, they are static and
fixed for the entire CRSP sample. Winsorization levels from 1.0± 1.5 to 1.0± 5.0
(instead of 1.0± 3.0), with half-lives from 75 to 120 trading days (instead of 90
trading days) show similar performance.

My paper now proceeds as follows. Section 1 explains why the (future) realized
OLS market beta is so useful to an investor, and when and why it matters that beta
estimates can be horizon-dependent. Section 2 describes the estimators. It also
shows that bsw performs well in simulations that match CRSP moments. Finally,
it describes the age-decayed version, bswa. Section 3 describes the CRSP data
used and shows some summary statistics. Section 4 discusses the empirical test
design. Section 5 investigates the empirical performance of the beta estimators.
And Section 6 concludes, followed by a 10-line R program that implements both
bsw and bswa.

1 Ex-Post OLS Market Betas as Estimation Targets

When an investor buys a security i and shorts wi times the market, she earns
R̃P ≡ R̃i −wi · R̃m. The portfolio return volatility is

Var(R̃P) = Var(R̃i −wi · R̃m) = Var(R̃i) +w2
i · Var(R̃M )− 2 ·wi ·Cov(R̃i , R̃m). (2)

Dividing by Var(R̃M ) yields

Var(R̃P)/Var(R̃m) = Var(R̃i)/Var(R̃M ) +w2
i − 2 ·wi · βi . (3)

Note that the beta in the market-model regression appears naturally, while the
alpha is irrelevant to the optimal hedge. Because Var(R̃m) is just a constant, the
lowest volatility hedge is

min
wi

Var(R̃P) =⇒ w∗i = βi . (4)

The βi from the OLS formula is the investment weight in the market that minimizes
the variance of the overall portfolio in its same realized sample of rates of return.

Furthermore, the CAPM is a model that relates this ability to hedge to equilib-
rium expected rate of return. This relationship requires many more assumptions
and does not have strong empirical support. However, the hedging aspect does
not require the CAPM. Hedging is also useful to all investors who want to min-
imize their tracking error to the market or lower their risk using market index
instruments.
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The relationships above hold not only for the true unobservable beta βi (which
minimizes the true unobservable volatility), but also for the ex-post realized beta bi
(which minimizes the ex-post realized volatility). An investor interested in the low-
est risk portfolio (combining an investment in a firm with one in the stock market)
would rather minimize the realized ex-post sample volatility than the expected true
portfolio volatility, in the same sense that a lottery player would rather know the
realized than the expected return on different number combinations. (However,
this is of course not possible.) Equation (3) is also horizon independent, in that
over any horizon, the OLS beta minimizes the portfolio variance in the sample of
returns from which it has been computed.

Yet, an OLS beta estimate obtained from one set of (prior) returns does not
necessarily minimize the variance in a set of different (later) returns. This is of
course the application that analysts require. They can only use historical rates
of return to estimate beta but are interested in the best hedge for future rates of
return (i.e., the future beta).

This application is also why non-OLS beta estimators (on historical returns)
can be superior in forecasting the subsequent OLS beta. A direct analog are asset-
pricing models, in which analysts do not use historical average rates of return to pre-
dict future rates of return. (They would not expect a stock like Tesla with 500% re-
turn in 2020 to have a 500% return in 2021.) Instead, they predict better if they use
a different model on historical returns—such as a factor model or a model based on
analysts’ prevailing predictions. The same is the case for estimate betas. Analysts
would not necessarily want to use the historical OLS beta to estimate the future OLS
beta.

If the underlying true return process (beta) were constant, the longest ex-ante
return series should be used to produce a (then horizon-independent) estimate
for the ex-post beta. However, this is not the case in reality. The underlying true
betas are themselves time-varying—and specifically mean-reverting. Thus, unlike
Eq. (3), the association between ex-ante forecasting beta estimates and the ex-post
realization beta target is not horizon independent. The estimation interval matters
and the best estimate of the instant beta is not the same as the best estimate of a
longer-term beta. For this reason, Levi and Welch (2017) suggest more aggressive
shrinkage when estimating the latter.

My paper primarily investigates the performance of various estimators in pre-
dicting the ex-post OLS beta, holding (most) estimation parameters constant
(e.g., using the same sets of prior and subsequent returns to compare). Al-
though the horizon could have mattered in when what beta estimator performs
best, the empirical analysis shows that this is not the case in CRSP data for
prediction horizons from one month to ten years. (I did not explore longer hori-
zons.) The slope-winsorized beta estimators always performs better than their
peers.
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My base specification predicts a 252-day OLS market-model regression on
daily returns on each stock-month end.1 My paper (and unreported robustness
checks) have also considered many other variants. The results never changed
qualitatively. That is, I could not identify subsets or methods in which the bsw and
bswa estimators did not outperform their peers in estimating future OLS betas.
bsw and bswa also predicted the future estimates from most other beta estimators
better than these could predict themselves.2

2 The Beta Estimators

An investor can only use ex-ante information to estimate the future OLS beta (the
minimum-variance forward-looking hedge ratio). The novel slope-winsorizing
estimator bsw introduced here is one formula among many.

2.1 The Slope-Winsorized Beta Estimators

The slope-winsorized beta estimator belongs to the class of robust winsorizing
methods. Such estimators require an “aggressiveness” parameter, which sets the
trade-off between Type-I and Type-II errors: correctly winsorizing unpredictive
outliers versus incorrectly winsorizing predictive outliers. Good choices trade
off being too lax (thereby not having any effect) versus being too strict (thereby
pushing all beta estimates too close to the same value of 1.0).

The most common robust estimator would winsorize extreme (dependent)
stock returns. The top plot in Figure 1 illustrates such a “level winsorization.”
By compressing the range of the dependent variable, the beta estimates in the
market-model regression become biased towards zero. This bias is especially
undesirable in our case, where the beta prior centers not on 0.0 but on 1.0.3

Moreover, the level parameter requires an analysis of what reasonable daily rates

1A better estimation window than 12 months would be 16–20 months. See also Foster and Nelson
(1996) and Ghysels and Jacquier (2007). However, the 12-month window has a more natural relation
to the calendar and moreover performs nearly as well.

2My paper does not entertain an approach that assumes an equilibrium model in which stocks
with higher betas have higher expected rates of return, and then tests what betas best predict the
future average rates of return. Such tests would have to lean hard on a good equilibrium model of
returns that the profession just does not yet have.

3Empirically, level winsorization performed poorly, because there were many days on which the
overall stock market itself had exceptionally positive or exceptionally negative rates of return. On
these days, level winsorization incorrectly cut off too many informative large positive or negative
individual rates of return. Band winsorization is an alternative to slope winsorization, but it has not
been used in the literature and it does not seem to outperform slope winsorization. It is also more
natural to specify reasonable (beta) slopes than reasonable (return) residuals. The latter may very
well differ more across different types of stocks.
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of return should be for different stocks—and they would likely be different not
only across different types of stock but also when the stock market experiences
a crash versus on a day on which not much is happening. A good winsorization
level would not be easy to judge.

Level winsorization is so common that analysts often apply it to data before
the models are even considered (and commonly fail to report it). However,
model-specific winsorization schemes can often do better. Consider an example in
which stocks follow a fat-tailed return distributions with occasional large outliers.
An investor should not want to reduce such outliers when estimating volatility.
However, when estimating betas, she should recognize that such outliers may
randomly and unrelatedly occur on days when the rest of the stock market happens
to have gone up or down. Ergo, this investor may want to reduce such outliers
less aggressively when estimating volatility than when estimating beta.

“Slope” winsorization limits firms’ rates of return based on minimal and maxi-
mal coefficient slopes on the market rate of return:

rswi,d ∈ (1.0+ [−∆,+∆]) · rm,d , (5)

where ∈ denotes the winsorization and ∆ is the winsorization parameter. In this
paper, delta is set to 3.0, thus leaving a return range limited to (1.0±3.0) · rm,d .4,5

The final slope-winsorized beta is then

bswi ≡
cov[rswi,d(∆), rm,d]

var(rm,d)
. (6)

The bottom plot in Figure 1 illustrates slope winsorization. It is custom-designed
for our application: It relies on the knowledge that the mean market beta is 1, that
the daily intercept (alpha) is near 0, and that, from an ex-ante perspective, few
stocks are likely to have extreme rates of return, not justified by overall market
returns appropriately modulated by reasonable market betas.

Note that unlike a Bayesian prior, the winsorization changes all beta esti-
mates. It can do so even for stocks with OLS betas of 1.0. The presumption
is not that betas shouldn’t be too large, but that stock returns shouldn’t be too
large.

4Delta was chosen roughly where the monotonic relation between historical and future OLS betas
breaks down. Betas more extreme are rare. In the CRSP sample, only 0.17% of all bols estimates
exceed slopes of −1 and +4. (In fact, negative betas rarely occur.) The delta choice is extremely robust.
Even ex-post optimal parameters within many subsamples improve the predictive performance only
modestly.

5Note that if the market rate of return is 0%, the firm’s rate of return is itself set to 0%. This turns
out to be irrelevant, because observations on days on which the market rate of return is (near) its
mean (of zero) are uninformative in the market-model regression anyway.
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2.2 Benchmark Alternatives

The literature already offers other estimators against which the performance of
the slope-winsorized beta can be judged:

1. bols: The ex-ante OLS beta is obtained from a regression using ex-ante daily
returns.

2. bvck: Like bols, the Bayesian shrinkage estimator in Vasicek (1973)—which
is the same as a frequentist random-effects panel estimator—can be calcu-
lated with daily-frequency stock returns.6 For each stock, it requires first
computing bolsi and the coefficient’s standard error (σ2

i ). Then it requires
calculating cross-sectional statistics over all stocks’ betas to obtain a cross-
sectional mean (bolst) and standard deviation (σ2

t ). For each stock i at
time t, the Vasicek estimate is

bvcki ≡ wi · bolsi + (1−wi) · bolst , where wi ≡
σ2

t

σ2
i +σ

2
t

. (7)

The Vasicek estimator was derived under the assumption of betas that are
not time-varying and that market-model residuals are normally distributed.
It performs well with time-varying underlying betas and outliers, although
this was not how its use was originally justified.

3. bfp: Frazzini and Pedersen (2014) suggested a hybrid estimator, which uses
both daily and monthly frequency stock returns. The estimation details
are explained in their paper. Frazzini and Pedersen did not validate the
performance of their estimator. See also Novy-Marx and Velikov (2018) and
Han (2022) for their critiques that bfp is not really an estimator of the true
beta.

4. bmols: An equivalent OLS beta can be calculated from monthly stock returns.
Instead of using about one year’s worth of data, monthly estimators use 60
months of historical return data. (The one-year monthly-return frequency
beta estimates perform far worse.) The abbreviations contain the letter m
to distinguish them from the daily estimates.

5. bmvck: An equivalent Vasicek estimator calculated from monthly stock
returns.

6. bmblm: Blume (1971) debiased the OLS estimator using an empirically
estimated linear correction. His Table 4 shows a mean adjustment of 0.64.
The Bloomberg (formerly Merrill-Lynch) market beta simplifies the shrinkage

6Vasicek/random-effects estimators have shown superior performance also in predicting future
alphas (Harvey and Liu, 2018).
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to 2/3. This estimator is covered on the CFA exam and distributed widely by
Capital IQ to financial websites, such as Yahoo!finance and Google Finance.

Section 5.5 briefly discusses some other beta estimators.

2.3 Simulated (Theoretically Expected) Performance of Estimators

An OLS estimator is known to be the best unbiased linear estimator (“BLUE”) under
standard OLS assumptions. Why is it then possible that the bsw estimator can
perform better in predicting the future bols realization than the bols estimator?

The primary differences from the standard OLS assumptions are that (1) there
are stock return outliers in the data, and (2) the bsw estimators can use information
that the true mean beta is about 1.0, which is not used by bols, (3) the estimator
does not require unbiasedness (as do other common shrinkage estimators), and
(4) the underlying beta is mean-reverting. The extra information in (2) is used not
only by the slope-winsorized estimator, but also by the bmblm and bvck estimators.

The first question of interest now is how well one can expect these estimators
to perform in theory. Unfortunately, there are no closed-form expressions for
the theoretical properties of any robust slope estimators even under the normal
distribution. Moreover, stock-return outliers do not follow any known distribution.
Fortunately, simulations in large samples can yield nearly exact results. Thus, I
now examine the performance of bsw and other beta estimators in simulations
designed to match some empirical moments:

1. Each simulation begins with a hypothetical set of five years of daily mar-
ket rates of return, which are randomly resampled realizations from the
empirical realizations of value-weighted market returns after 1974.

2. I now draw pairs of market-model beta and sigmas (the standard deviation
of market-model residuals). The intent here is to retain the association
between the two—in the CRSP data, firm-years with higher betas also have
higher sigmas. I entertain two variants:

(a) In a parameterized version, a sigma is first drawn from a lognormal
distribution, and beta is assumed to be linearly related to the log-
sigma plus an error. The moments (and relation) are matched to their
distributions in the empirical data. The linearity is not intended to be
realistic, but just a sketch.

(b) In a sampled version, sigma and beta are randomly drawn pairs from
the empirical firm-year distribution of estimated market-models.

(Note that the simulations remain unrealistic in one respect—the true beta
is held constant.)
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3. I now sample five years of daily market-model residuals from the empirical
distribution. This is in order to retain the skewness and kurtosis of market-
model residuals in the data.

4. Daily returns are the sum of the beta-scaled market rates of return plus the
sigma-scaled market-model residuals.

All generating information, except stock and market returns, is hidden from the
estimators. Monthly estimators (like bmblm) receive access to five years of data,
albeit compounded into 60 monthly stock returns.7 The daily estimator receives
access only to one year, 252 daily stock returns.

Unlike in the empirical analysis in later sections, the experimenter knows the
true (fixed) OLS betas in each simulation. Thus, there is no need for a sixth year
of out-of-sample market betas to be predicted. The beta estimates can be directly
compared to the true betas.

Table 1 tabulates the results. For each draw, we calculate betas using various
estimators, and compare them to the (hidden but known) true betas that underlay
the random draws. The table shows that monthly bmblm estimates are nearly
unbiased, but they have high RMSEs of 0.32 to 0.33 in both scenarios. Both the
plain OLS and Vasicek estimators can provide better beta estimates using a shorter
window with higher frequency data. Their RMSEs are 0.188 and 0.184 for bols,
and 0.200 and 0.184 for bvck. The slope-winsorized beta estimator performs best,
with RMSEs of 0.170 and 0.177. This suggests a relative improvement by the bsw
estimator of about 40 to 45% over bmblm, and about 5 to 10% over the bols and
bvck estimators.

2.4 Age Decay Versus Block Sampling

It has long been known that the underlying beta drifts. The common way to
handle this drift is to use a block-sampler (Ghysels and Jacquier, 2007), i.e., a
moving estimation window. All daily estimators described so far are 252-day
block samplers computed at the end of each month; all monthly estimators are
60-month block samplers.

An alternative is to progressively disregard older observations. A WLS regres-
sion can offer smooth in-time age decay. This is the age-decayed bsw estimator,
mentioned in the introduction, named bswa.

Block samplers require a window length as a parameter, while age decay
requires a speed of decay as a parameter. To keep its implementation simple,
bswa uses only one fixed decay parameter, regardless of firm and time. Thus, like

7This is generous to the bmblm estimator, in that it assumes that the underlying betas do not
change. Thus, stock returns from five years ago remain as relevant as more recent stock returns (as
used in bols, bvck, and bsw).
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Distance from True Beta

Return “Normal Scenario” “Empirical Scenario”

Estimator Inputs Mean SD RMSE Mean SD RMSE

bols 252 Days −0.000 0.188 0.188 −0.000 0.184 0.184
bvck 252 Days −0.016 0.199 0.200 −0.016 0.183 0.184

bmblm 1,260 Days 0.002 0.331 0.331 0.002 0.320 0.320

bsw 252 Days −0.015 0.170 0.170 −0.017 0.176 0.177

Table 1: Idealized Properties of Market-Beta Estimators’ Errors.

Description: The table is based on 1 million resampled draws of each (252×5) market rates of return,
(252× 5) resampled/simulated market-model residuals, and one resampled/simulated market-model
sigma with associated beta. The “normal” columns parameterize the firm-specific inputs (log-normal
market-model sigma, betas linear in log sigma (with normal error), and normal market-model residuals).
The “empirical” columns sample directly from the empirical joint distribution of market-model sigmas
and betas (winsorized at 0.1% and 99.9%), and from the empirical distribution of unit-normalized
market model residuals. The estimators use only the stock and market rates of returns. This table
summarizes the beta prediction errors of four estimators. bmblm is the Bloomberg-Merrill-Lynch
(Blume) estimator (2/3× bols+ 1/3× 1) using compounded monthly returns, bols is the standard
OLS estimator, bvck is the Vasicek (1973) estimator (given both the true mean and the true standard
deviation of market betas in this sample), and bsw is the slope-winsorized estimator.

Interpretation: The slope-winsorized market beta, with its lower RMSE, outperforms the alternatives.
Source: simul/1simul-emp.Rmd

bsw, analysts can calculate bswa with no need for a first-stage regression. My age-
decayed, slope-winsorized beta estimator has a constant decay of 2/256≈ 0.78%
per day and is named bswa. Good half-lives range from about 75 to 120 days, with
90 days being a good middle, (1/(1+ 2/256)90 ≈ 0.5). Intuitively, this parameter
implies that yesterday’s stock returns should have about twice the weight of stock
returns from four months ago, eight times the weight of those from one year ago,
and sixty times the weight of those from two years ago. Three-year-old stock
returns are effectively irrelevant.

The decay parameter itself was originally chosen based on an analysis of data
prior to 1973. As just noted, the empirical performance of bswa remains very
similar when each day’s presumed information content decays not by 0.78% per
day, but by 0.7% to 0.9% per day. That is, the precise choice is not sensitive. When
optimized, the best decay also remains stably within this interval regardless of
sample or years analyzed. In sum, the decay parameter could be chosen based on
predictive performance in preceding years (or based on different stocks altogether).
The choice would remain similar.

An advantage of age-decayed betas is that they can be easily updated in the
same regression in time—unlike a block sampler which needs a new regression
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whenever more data becomes available and is to be used. A disadvantage of
age-decayed betas is that they should include all data since the first appearance of
a stock (though old-enough data barely matters)—unlike a block sampler which
has a limited data requirement.

3 Data

The data set for the analysis is based on the early-2020 CRSP database. It contains
75,230,516 daily stock returns from ordinary stocks (with CRSP share codes 10
and 11) from 1926 to 2019. The main data analysis itself begins in 1973 (just
after NASDAQ came online).

In addition to the stock return data, end-of-month marketcap ranks from CRSP
(contemporaneous with the ex-ante market-beta independent variable estimates)
are sometimes used to limit the main analysis to the then biggest 1,000 or 3,000
stocks.

In the implementations and tests below, the dependent variable in the market
model is each stock’s own rate of return (from CRSP) net of the risk-free rate
of return (from Ken French’s website). The independent variable is the value-
weighted market rate of return, again net of the same risk-free rate of return. The
beta is not calculated when a stock does not have at least 20 trading-days of stock
returns, or when a return is not present on the last trading day. In some later
tables, other data requirements (such as 100 trading days within the year) are
imposed.

Table 2 shows the data ranges, means, and standard deviations of the inde-
pendent variables (predicting betas) used in the first set of tables. Each daily beta
is based on 252 days of daily stock returns. Each monthly beta is based on 60
months of return.

Because the stock market index used in the market model is value weighted,
the equal-weighted average beta across stocks in the sample is not 1.0. However,
for the 1,000 biggest stocks, the distance from 1.0 is less than 0.03 for the first
four estimators (bols, bvck, bsw, and bswa) and less than 0.07 for the others. For
the 3,000 biggest stocks, the distance from 1.0 is modestly more pronounced,
reaching 0.13 for bmols. Beta estimates based on different methods also differ in
their standard deviations. The bfp estimates are least heterogeneous. The OLS
estimates (both daily and monthly) are most heterogeneous.

Because all estimators attempt to isolate the same underlying true beta from
the same returns, it is not surprising that they are somewhat similar. How-
ever, this raises the question of whether the choice of estimator matters. Ta-
ble 3 shows the root-mean-squared differences across estimators in pairwise
comparisons.

The largest estimated differences are observed across estimates using different
return frequencies. Among daily estimates, the differences are about 0.1 for
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Return 1,000 Big Stocks 3,000 Big Stocks

Beta Estimates Abbrev Freq Mean SD Mean SD

OLS Beta bols Daily 0.99 0.49 0.95 0.55
Vasicek (1973) Beta bvck Daily 0.97 0.45 0.93 0.51
Slope Winsorized bsw Daily 0.96 0.42 0.92 0.46
Slope Winsorized/ bswa Daily 0.96 0.41 0.92 0.45

Age-Decay

Frazzini and Pedersen bfp Hybrid 1.05 0.30 1.03 0.33
(2014)

OLS Beta bmols Monthly 1.07 0.55 1.12 0.64
Vasicek (1973) Beta bmvck Monthly 1.04 0.46 1.08 0.50
Bloomberg bmblm Monthly 1.04 0.37 1.08 0.43

N = 351,155 N = 68,267
(Overlapping (December Only)
Month Ends)

Table 2: Descriptive Statistics of Ex-Ante Beta Estimates, 1973 to 2019.

Description: The 1,000-stock sample overlaps 252-day stock returns; the 3,000-stock sample uses
only January-to-December non-overlapping data. Daily-based estimators use 252 days of stock returns.
Monthly-based estimators use 60 months of stock return data. The sample period is 1973 to 2019. The
1,000 or 3,000 stock subsamples were ranked by marketcap contemporaneous with the beta estimates.
These two subsamples are used in all subsequent tables.

the 1,000 biggest firms and 0.15 for the 3,000 biggest firms. Among monthly
estimates, the numbers are just a little higher. Across monthly or daily estimates,
the distances are between 0.4 and 0.6. This holds true even for estimators using
the same methods (such as bols and bmols).

The two slope-winsorized estimators (bsw and bswa) differ by 0.08 from each
other for the biggest 1,000 firms and by 0.10 for the biggest 3,000 firms. The
block-sampled one-year bsw is also similar to the block-sampled one-year bvck
with a distance of 0.06. (The good performance of bvck was due to its [largely]
coincidental handling of outliers.)

These differences among estimators seem sensible. They are small but not
trivial. For a CAPM use with a risk premium of 6%, the typical inferred expected
return differences due to beta estimators with RMSE differences between 0.1
and 0.4 would be about 60 to 200 basis points per annum. This is economically
meaningful.
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Daily Returns Hybrid Monthly Returns

bvck bsw bswa bfp bmols bmvck bmblm

Panel A: 1,000 Biggest Stocks, Overlapping, on Month Ends

bols 0.05 0.11 0.14 0.31 0.46 0.42 0.39
bvck 0 0.06 0.11 0.29 0.45 0.40 0.37
bsw 0 0.08 0.27 0.45 0.39 0.35
bswa 0 0.26 0.44 0.38 0.34

bfp 0 0.41 0.33 0.27

bmols 0 0.12 0.19
bmvck 0 0.12

Panel B: 3,000 Biggest Stocks, December Only

bols 0.08 0.15 0.19 0.38 0.59 0.51 0.49
bvck 0 0.09 0.14 0.36 0.59 0.49 0.47
bsw 0 0.10 0.33 0.58 0.47 0.45
bswa 0 0.32 0.58 0.46 0.44

bfp 0 0.51 0.37 0.34

bmols 0 0.21 0.22
bmvck 0 0.14

Table 3: Distinctness of Ex-Ante Beta Estimates, 1973 to 2019.

Description: These are the pooled root mean square distances between beta estimators,
Ç

1/T ·
∑

t (b
(A)
t − b(B)t )2, where (A) and (B) denote different beta estimates for the same stock in

month t, in the two subsamples from Table 3.

Interpretation: Beta estimates based on daily stock returns are quite different from those based on
monthly stock returns.

4 Test Design

4.1 Forecasting Regressions and R2 and RMSE as Performance Metrics

The primary criterion to evaluate the performance of slope-winsorized betas and
other betas is how well they forecast realized future OLS betas (Rosenberg and Guy,
1976; Harrington, 1983). The secondary criterion (to be explored in Table 7) is
whether they can forecast themselves. If the slope-winsorized betas can also predict
other beta estimators better than these beta estimators can predict themselves, it
suggests that investors should still use the ex-ante slope-winsorized betas even if
they were interested in these other estimators’ ex-post realizations.

Like earlier papers, I consider two measures of forecasting success. Both are
based on the ability of estimated historical betas (named b̂i,y) to predict the future
realized OLS beta, bolsi,y+1, where y is a year index. (Each beta is estimated from
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daily returns within the year y , although Table 5 extends the forecast to multiple
years.)

The first success metric is the R2 from predictive “gamma” regressions,
bolsi,y+1 = γ0 + γ1 · b̂i,y + εi,y+1:

R2 ≡
Cov(b̂i,y , bolsi,y+1)2

Var(b̂i,y) · Var(bolsi,y+1)
, (8)

averaged over all observations (cross-section and time-series).
The second metric is for the use of a historical beta as a direct proxy,

RMSE≡
√

√

∑

i

∑

y

(bolsi,y+1 − b̂i,y)/(N · Y ). (9)

The R2 metric is not affected by bias in the beta estimators, but the RMSE metric is.
When beta is merely a control variable in a regression, such bias is often harmless
and methods with higher R2 are better. When beta is used directly to inform the
hedge ratio, methods with lower RMSE are better.

Most of the remaining tables below show the results of pooled forecasting
panel “gamma” regressions. The nature of the data means that these regressions
are mostly cross-sectional. Each year has thousands of observations in the cross-
section on fewer than 50 years. Not shown here, the results are also the same
with Fama–MacBeth-like test specifications, when overlapping months rather
than calendar-year forecasts are used (or vice-versa), and when betas compete in
multivariate (rather than univariate) gamma regressions.

4.2 Errors in Beta Variables

Realized OLS betas are a measure of realized diversification benefits for an investor
holding the market portfolio. They are themselves of interest.

However, they are not the true underlying betas. To the extent that realized
betas differ from true betas, the prediction tests suffer from noise (e.g., lower
R-squareds in the “gamma” regressions, which predict future realized betas with
current beta estimates).

For the dependent variable, the future bols, measurement noise is a minor
concern. One expects ex-ante estimators that perform better in predicting the
future realized bols also to be able to predict better the unknown true (expected)
betas. Put differently, even if the interest is the ability to predict the true future
market-beta, errors in the dependent variable are a benign complication from an
econometric perspective. It is what OLS was designed for.

For the independent variable, the noise is more of a concern if the gamma
coefficient is to be interpreted as a measure of how the true beta would predict
the future beta. If the underlying model is stable, then the asymptotic bias in
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a slope coefficient of past on future values is 1/(1 + σ2
e/σ

2
b), where σ2

e is the
squared standard error of the noise and σ2

b is the cross-sectional dispersion in the
(beta) predictor. The average estimated beta standard error in the market-model
regression is a rough estimate for σ2

e . It is about 0.05 (per day). The average
dispersion of estimated betas in the cross-section is a rough estimate for σ2

e . It
is about 0.40 (per firm). Thus, an over-the-envelope estimate for the γ1 bias is
about 1−1/(1+0.05/0.42)≈ 2%.8 The actual empirical bias is larger because the
underlying beta is also not stable. In addition to time-varying betas, our sample
also has time-varying heterogeneity in firm-size, and with it time-variation in
cross-sectional beta means and standard deviations.

However, the purpose of my forecasting regression is not to test whether the
gamma estimates are biased relative to the case in which the independent variables
had been the true betas. They surely are9 if one wanted to use the gammas to
assess how the true unknown beta would predict the future (OLS) beta. Instead,
the purpose is to determine which of the beta estimates predicts the future OLS
beta better. It is the estimated betas that are the object of interest, not the true
betas. In this sense, there is no errors-in-variables concern.

However, we can assess how the beta estimates relate to the true unknowable
betas. If both the dependent and the independent variables are proxies drawn with
error from an unknown true but stable normal variable, the R2 of a cross-sectional
regression of one proxy on the other yields an R2 that is the square of the R2 in an
(infeasible) regression of the true (unknown) beta parameter on the realized OLS
beta (see also Jegadeesh et al., 2019). For example, if the ex-ante OLS beta, bols,
can explain 50% of its ex-post self, it would suggest that bols could explain aboutp

.50≈ 71% of the true unknown beta.10

In sum, potential improvement in predictions for any beta estimator above
and beyond that provided by the OLS beta itself are effectively limited by two
aspects. First, the predicted beta is not the true beta, but a noisy measure of the
true beta. Second, if two betas are different by 0.2, the maximum improvement
that one estimator can provide over the other is 0.2.

5 Empirical Evidence

5.1 Predicting One-Year Daily OLS Betas

Predicting out-of-sample betas is the problem investors face when they want to
determine their minimum-variance hedge ratios. Table 4 shows the key result

8These approximations have ignored the panel nature of the data. However, unreported simulations
suggest that they are reasonably applicable in our panel sample, too.

9The above calculation suggest that the biased would be modest, however.
10If the underlying betas are changing, the estimated square root of the R2 is a lower bound. The

association of an instant proxy with the true instant beta would be higher.
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(Ex-Post) (Ex-Ante) 1,000 Big Stocks 3,000 Big Stocks

Predicted Predictor γb se(γb) R̄2 RMSE γb se(γb) R̄2 RMSE

bols bols 0.744 0.004 0.580 0.332 0.703 0.003 0.517 0.411
bvck 0.798 0.004 0.578 0.322 0.776 0.003 0.526 0.391
bsw 0.862 0.004 0.580 0.314 0.859 0.004 0.534 0.377
bswa 0.897 0.004 0.604 0.302 0.895 0.004 0.554 0.366

bfp 1.063 0.007 0.447 0.360 0.986 0.008 0.362 0.441

bmols 0.469 0.005 0.297 0.501 0.391 0.005 0.215 0.643
bmvck 0.550 0.005 0.289 0.456 0.513 0.006 0.220 0.551
bmblm 0.703 0.007 0.297 0.417 0.587 0.008 0.215 0.529

Table 4: Predicting Future Ex-Post (One-Year-Ahead) OLS Market Beta, 1973 to 2019.

Description: The two samples are the same as in the previous tables. The reported statistics pool
cross-section and time-series. γb , se(γb), R̄2 , and RMSE are from the same regression. (The intercept is
included, but not reported. The set of 1,000 stocks predicts overlapping stock-months (thus forecasting
one ex-post beta from, say, January-to-December followed by another from February-to-January).
The set of 3,000 stocks predicts only calendar year-end months (from January-to-December). The
overlapping months regressions on the left use 12 Newey–West lags for their standard errors.) RMSE is
the root-mean-squared prediction error between x and y (which is not impervious to differential mean
bias). The dependent variable is always the one-year ahead (“ex-post”) OLS market beta, calculated
from 252 days of daily stock returns. The independent variables are the estimates from methods
defined in Section 2. The first four estimators are based on ex-ante daily stock return data, the last
three estimators are based on ex-ante monthly stock return data, and bfp uses both daily and monthly
returns. bols and bmols are OLS betas. bvck and bmvck are Vasicek betas. bmblm is the Bloomberg
beta also popular on most finance websites. bfp is the Frazzini and Pedersen (2014) beta. bsw and
bswa are the novel slope-winsorized betas. bswa weights older returns progressively less.

Interpretation: The slope-winsorized market betas outperform all alternatives.
Note: Best predictions are in bold.

of the paper: the performance of estimators in predicting the future OLS market
beta. Here, betas are calculated from 252 daily stock returns.

The first four rows focus on estimators based on daily stock returns. The
slope-winsorized betas outperform both the OLS and Vasicek betas. The per-
formance improvement of bsw over bvck is about the same as the performance
improvement of bvck over bols. The age-decayed bswa performs better than the
block-sampled bsw. The standard errors show that, with their 351,155 (overlap-
ping) and 68,267 (nonoverlapping) firm-months observations, respectively, the
forecast improvements are always statistically significant.

The next rows show that the other four beta estimators perform much worse.
The bfp estimator, a hybrid (still based partly on daily stock returns), performs
worse than any of the pure daily-return-based estimators. The OLS and Vasicek
estimators from monthly stock returns perform even worse. And the nearly
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Figure 2: Year-by-Year Relative Predictive Performance of Estimators, Big 3,000 Stocks, December
1973 to 2019.

Description: This plot is equivalent to Table 4, but shows the differences in the RMSEs of the predictive
regressions when run year by year (Decembers only, top-3,000 stocks) versus an ex-ante OLS predictor.
The zero line is the OLS predictive performance. Higher values indicate superior performance over the
OLS beta. The solid blue line shows the bswa estimator, the dashed blue line shows the bsw estimator,
the black line shows the bvck estimator.

Interpretation: The performance of bvck, bsw, and bswa is better in the second half of the sample.
The estimators do not seem to change their performance ordering over the sample.

ubiquitous Bloomberg estimator pales in comparison to any of the betas obtained
from estimators based on daily stock returns. Beta estimators based on monthly
stock returns should not be used for forecasting the daily-frequency OLS beta.

This forecasting improvements also align roughly with those suggested in
Section 2.3. The improvement of bsw over the Bloomberg and other monthly
betas was about 30%, 8 to 10% over the OLS beta, and 4 to 5% over the Vasicek
beta. The superior performance of bsw is remarkably consistent and all the more
impressive, because the ex-post betas used in the performance tests are not the
true betas but are themselves measured with error.

Figure 2 plots the relative performance of the estimators by year. Each point is
the difference between the forecasting RMSE obtained by bols minus the forecast-
ing RMSE of the named estimator. A positive number means that the estimator
outperforms the bols estimator. The plot shows that the RMSE performance of
the three estimators is better in the second half than in the first half. The slope-
winsorized estimators, both plain and age-decayed, visibly outperform both the
bols and bvck estimators—and not just in a some year clusters. The superior
performance of the two slope-winsorized estimators is not a fluke. It occurs in
(completely separate) samples over many years. The performance has also not
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diminished over time. Not shown, other subsamples (e.g., based on market-
cap, assets, stock volatility, ex-ante beta, etc.) also suggest that slope-winsorized
estimators are better than their peers.

Not shown, when the static delta and rho parameters are replaced by the
(unobtainable) ex-post year-specific delta and rho parameters that would optimize
performance, the performance of the slope-winsorized betas of course improves—
but not greatly so. This suggests that any potential gains from further fine-tuning
these two parameters are likely to be small.

5.2 Predicting Long-Term OLS Betas

It is a good question whether a better short-term beta hedge is also the better
long-term beta hedge. Thus, Table 5 predicts longer-horizon market-betas. For
variety, this table now uses the largest 2,000 stocks and non-overlapping annual
calendar year regressions. Both panels show that the bsw and bswa estimators
always perform better than the other estimators. The rightmost column further
shows that the daily OLS beta estimators also predict the future monthly OLS
beta estimates better than the monthly OLS beta estimates predict themselves.
Even a (CAPM) user should use daily-return frequency betas, not monthly-return
frequency betas. Furthermore, monthly betas are especially problematic if they
are used as direct proxies and not first debiased.11

5.3 Predicting Hedged Portfolio Returns

Table 6 uses a different sample (starting in 1928), annual non-overlapping gamma
regressions, and 3,000 stocks. Its purposes is to examine a different success
metric—the variance of the market-hedged stock portfolio over the following year.
In effect, in this objective function, the portfolio cannot be rebalanced (rehedged)
during the calendar year, because the beta-hedge is applied to year-compounded
firm and market rates of return. The table shows that the portfolio is best hedged
with the ex-ante bsw or bswa rather than with the ex-ante bvck or bols estimators.
However, the bvck estimator shows good performance, too.

5.4 Predicting Self Rather than the OLS Beta

Investors who want to establish a minimum-variance hedge presumably care only
about the future beta. Historical data is useful only insofar as it informs the
estimate. To the extent that all beta estimators attempt to uncover the same true

11The monthly betas perform “only” badly, but not “as” badly, in predicting future monthly betas.
This may be the case because the same estimation bias/noise appears in both ex-ante and ex-post
monthly betas and differently across different kinds of stocks. Note however that the samples in the 5y
daily and 5y-MO monthly regressions are different, too, and thus the R2 are not strictly comparable.
In any case, in the same set of observations, monthly betas remain dominated by daily betas.
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Daily-Frequency Returns, Future Beta Over Monthly Freq

1y 2y 3y 5y 10y 5y-MO

Panel A: Adjusted R2, in Percent

bmols 24.42 17.49 12.77 7.17 4.68 21.35
bmvck 24.47 17.61 12.83 7.07 4.54 21.36

bols 51.99 39.03 30.97 20.21 5.92 25.25
bvck 52.62 39.97 31.94 20.86 6.10 25.17
bsw 53.45 40.74 32.62 21.32 6.59 25.35
bswa 56.23 42.38 34.08 22.38 7.12 26.59

N 66,851 62,400 56,626 45,872 25,179 44,462

Panel B: RMSE

bmols 0.5913 0.6217 0.6451 0.6715 0.6206 0.6190
bmvck 0.5163 0.5361 0.5555 0.5799 0.5501 0.5627

bols 0.3939 0.4410 0.4740 0.5218 0.5878 0.5742
bvck 0.3768 0.4154 0.4450 0.4895 0.5539 0.5624
bsw 0.3642 0.3959 0.4223 0.4635 0.5244 0.5497
bswa 0.3502 0.3852 0.4117 0.4531 0.5176 0.5401

N 66,851 62,400 56,626 45,872 25,179 44,462

Table 5: Multiyear Performance, 1973 to 2019, 2000 Stocks, Annual.

Description: This table shows predictions of longer-horizon market-betas. Except for 5y-MO, all ex-
post betas are calculated with daily-frequency stock returns (of which at least 100 had to be available
to estimate a beta). The predictive regressions are run on a calendar-year basis (December only). The
regression R2 and plain RMSE in predicting the future OLS beta are akin to those in Table 4.

Interpretation: The daily stock return-based betas always predict future market-betas better regardless
of target beta horizon and frequency used to calculated the target beta. Among daily-frequency-based
betas, the same performance ordering always holds: bols is worse than bvck, which is worse than bsw,
which is worse than bswa.
Source: Output comes from 1longtermols.R Jun 1, 2021.

beta (β) signal in noisy stock return data, the slope-winsorized estimators could
predict better the ex-post realizations of not only bols estimates but also other
(noisy) estimators.

To elaborate, consider a thought experiment. Assume that an investor is
interested in some other beta estimate for its own sake (e.g., to place a bet
with a friend). For example, this investor may want to bet on what the future
Bloomberg beta estimate will be. Would this investor prefer to use the historical
Bloomberg beta as her best predictor or would she prefer to use bswa? Because
bswa predicts the true beta better, it could also predict the future Bloomberg beta
(which partly contains the true beta) better. And if this were so, the prevailing
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SD SDpct Min 1% 5% 25% Median Mean

ri − bolsi ·rm 0.5491 0.3316 −1.88 −0.943 −0.6375 −0.2371 −0.0121 0.0347
ri − bvcki ·rm 0.5463 0.3301 −1.67 −0.909 −0.6250 −0.2348 −0.0118 0.0377
ri − bswi ·rm 0.5458 0.3290 −1.58 −0.899 −0.6177 −0.2336 −0.0116 0.0392
ri − bswai ·rm 0.5457 0.3285 −1.60 −0.899 −0.6180 −0.2333 −0.0120 0.0390

Table 6: Hedged Return Performance, 1928 to 2019, 3,000 Stocks.

Description: This table varies both the time-period and the objective function. For each firm-year, the
quantity ri,y − b̂i,y−1·rm,y (the hedged portfolio rate of return) is calculated, where r are the annual
compounded rates of return and betas were estimated using daily stock returns in the prior year. (At
least 100 returns had to be available to estimate a beta.) The reported statistics are over all firm
years. SDpct is the percentile equivalent of the standard deviation under the normal distribution (i.e.,
the difference between the returns at the (approx) 20th to the 70th percentile). There are 182,379
non-overlapping firm-calendar-years in the four predictive regressions.

Interpretation: The hedged portfolio is less risky when the hedge is based on the prior bswa or bswa.
Source: Output comes from 0mkbetas-retvar.Rmd May 30, 2021.

historical Bloomberg beta number would be of even lesser interest. Good self-
prediction is a necessary but not a sufficient criterion for an estimator to seem
useful.12

Table 7 predicts ex-post estimates that differ from those obtained from bols.
The table shows that, based on the R̄2 metric, the ex-ante age-decayed bswa is
the best predictor of the ex-post beta metric obtained from any other formula
(estimator). The one-year block-sampled bsw is not as good but never far behind.
For example, consider an investor who wants to estimate an ex-post five-year beta
based on monthly returns (bmols). On average, the investor will miss the mark
by 0.557 when using the historical bmols’ ex-ante equivalent. But, the investor’s
estimate will deviate by only 0.484, on average, if she uses the historical bswa
ex-ante equivalent.

Two estimators have persistent stock-specific estimation biases. Thus, based
on the RMSE metric, the bswa estimates cannot predict the Frazzini–Pedersen bfp
or the Bloomberg bmblm estimates as well as these two estimators can explain
themselves. In this sense, the Frazzini-Pedersen bfp and the Bloomberg bmblm
estimators can predict their future selves better on the RMSE metric than the
bswa estimator can explain them. In the case of the bmblm metric, the intuition
is easy. The superior self-performance is caused by the obvious fixed shrinkage

12Self-prediction is not enough. For example, a “beta estimator” claiming that beta is the firm’s first
CUSIP number could predict itself perfectly well, but it would not be considered a good estimator of
beta. This qualification is also important, because it has sometimes been argued that industry, size, or
other aggregated betas should be used in lieu of firm betas, because they are more stable. Although it
is indeed true that they are more stable, even cursory examination reveals that industry betas are very
poor predictors of any firm’s own firm betas. They should never be used as proxies for individual stock
betas. See also Levi and Welch (2017).
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(Ex-Post) (Ex-Ante) 1,000 Big Stocks 3,000 Big Stocks

Predicted Predictor γb se(γb) R̄2 RMSE γb se(γb) R̄2 RMSE

bswa bsw 0.759 0.003 0.600 0.279 0.742 0.003 0.571 0.319
bswa 0.791 0.003 0.624 0.266 0.772 0.003 0.591 0.307

bvck bvck 0.748 0.003 0.583 0.308 0.722 0.003 0.542 0.364
bsw 0.810 0.004 0.588 0.296 0.801 0.003 0.553 0.345
bswa 0.844 0.003 0.612 0.284 0.834 0.003 0.573 0.333

bfp bfp 0.451 0.006 0.192 0.322 0.450 0.006 0.186 0.361
bsw 0.381 0.004 0.270 0.381 0.384 0.004 0.263 0.431
bswa 0.397 0.004 0.282 0.372 0.402 0.004 0.275 0.420

bmols bmols 0.482 0.006 0.237 0.557 0.424 0.007 0.194 0.668
bsw 0.680 0.007 0.273 0.492 0.642 0.009 0.229 0.592
bswa 0.709 0.007 0.284 0.484 0.669 0.009 0.238 0.584

bmvck bmvck 0.499 0.006 0.251 0.464 0.462 0.006 0.226 0.500
bsw 0.591 0.006 0.287 0.431 0.530 0.006 0.258 0.485
bswa 0.616 0.006 0.299 0.423 0.552 0.007 0.268 0.476

bmblm bmblm 0.482 0.006 0.237 0.371 0.424 0.007 0.194 0.445
bsw 0.454 0.005 0.273 0.392 0.428 0.006 0.229 0.469
bswa 0.473 0.005 0.284 0.383 0.446 0.006 0.238 0.458

Table 7: Predicting Future Ex-Post Betas Other Than the OLS Beta, 1973 to 2019.

Description: In this table, the predicted beta is no longer the future bols, but other future beta
estimates (as indicated in the left-most column). To avoid overlap, monthly independent variables
were lagged by 60 months.

Interpretation: The ex-ante bswa also predicts other ex-post estimators better than these estimators
can predict their future ex-post selves.
Note: Best predictions are in bold.

towards 1.0—a metric that would shrink 99% towards 1.0 would have an even
more persistent bias. Absent their persistent biases (i.e., measuring performance
on the R2 metric), their self-prediction advantage disappears. For the bfp estimator,
the reason is the volatility mix into the estimator (Novy-Marx and Velikov, 2018;
Han, 2022). bfp is not primarily an estimator of the OLS market-beta.

In sum, with their easier implementation, there is little reason not to use the
better performing slope-winsorized estimators from daily stock returns in all cases.

5.5 Other Estimators

5.5.1 The Dimson Non-Synchronicity Estimator

Dimson (1979) and Scholes and Williams (1977) betas serve a different purpose.
They intend not to estimate the ex-post OLS beta, but rather a
“synchronicity-adjusted” equivalent. Thus, the appropriate criterion to assess their
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Least Traded Most Traded

Lo 1 2 3 4 5 6 7 8 9 Hi 10

Mean $V 0.01 0.04 0.1 0.3 0.6 1.4 2.8 6.0 14.9 95.4
No Trade 35% 21% 14% 10% 7% 5% 2% 1% 0% 0%

Mean bols 0.23 0.37 0.52 0.67 0.79 0.87 0.94 1.00 1.08 1.19
bswa 0.36 0.46 0.58 0.71 0.80 0.86 0.91 0.96 1.02 1.12
bdim 0.32 0.49 0.63 0.78 0.89 0.98 1.06 1.13 1.20 1.23

SD bols 0.56 0.55 0.58 0.62 0.62 0.59 0.57 0.56 0.56 0.57
bswa 0.29 0.33 0.38 0.42 0.44 0.42 0.42 0.41 0.41 0.42
bdim 0.76 0.73 0.76 0.75 0.74 0.72 0.69 0.68 0.68 0.67

Table 8: Summary Statistics by Dollar Trading Volume Deciles, 1974 to 2019.

Description: Firm-years are sorted into deciles, based on the mean dollar trading volume of the last
22 days of the (contemporaneous) calendar year. The sorts are first by calendar year, then trading
volume. Decile 1 (10) are the least (most) traded stocks. To be included, a firm had to have a valid
bols, bswa, and bdim in the following calendar year. There is no firm-size restriction in this sample,
but at least 100 returns had to be available to estimate beta. Stocks that had no beta the following
year were omitted. The observations are the same within each column, but different across rows. “No
Trade” is a dummy taking one if CRSP reports a negative price on the last day with a valid rate of
return in its calendar year.

Interpretation: There are four orders of magnitude difference in trading activity across deciles. More
frequently-traded stocks have higher betas. bswa has the lowest heterogeneity across and within
trading deciles, bdim the highest.

empirical performance is how they predict themselves, not how they predict the
future OLS beta, at least not in cases in which one would suspect non-synchronicity.
The Dimson beta is more common, perhaps because it is also very easy to compute.
It is the sum of three regression coefficients, with one lead and one lag on the
market rate of return included (in addition to the contemporaneous market rate
of return).

My first step is to identify subsets of stocks in which there likely is a lot of
non-synchronicity vs. subsets where there is not. Table 8 shows that there are four
orders of difference in magnitude across trading volume deciles, when trading
volume is defined as the average daily dollar trading volume over the last 22
trading days of the year.13 The next row shows that the price on CRSP is a bid-ask
quote rather than a trade (marked as a negative number) in one in three firm-years
in the least-traded deciles. It could be argued that such a quote suffers from less
non-synchronicity than a price from a trade that would have occurred earlier in

13The sort is by trading volume within each calendar year, but the dollar volumes themselves are
not inflation-adjusted. Thus, the magnitude of the reported numbers in Table 8 should be viewed only
as meaningful in relative but not absolutely terms.
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the day. More importantly, it confirms that the lowest decile truly suffers from
infrequent trades and thus more likely from non-synchronicity. In contrast, in
decile 10, stocks almost always trade on their last day.

The table further lists the means and standard deviations of the bols, bswa,
and bdim (Dimson) estimators by dollar trading volume. Firms that trade less
have lower betas on all metrics. This could be due to inadequate non-synchronicity
control or due to the fact that these firms are just different. bswa has the lowest
heterogeneity, bdim has the highest.

Table 9 shows predictive-regression performance metrics analogous to those
in earlier tables (e.g., Table 4).

In Panel A, the predicted variable is the ex-post bols (based on one year of daily
stock returns, calendar years only). It is often overlooked that Dimson estimates
do not provide superior performance for free. When there is no non-synchronicity
concern, bdim should perform worse, because it fails to take advantage of the
restriction that stock returns should be uncorrelated over time. Table 9 shows this
effect. In the most-traded decile, where there is little non-synchronicity and thus
the ex-post bols is a good target, bdim as a predictor is greatly inferior even to
bols as a predictor. bdim also performs poorly predicting the OLS beta among the
least-traded stocks, but this could be because the ex-post bols is meaningless for
stocks with such low trading volume.

When non-synchronicity is a serious concern, it may make more sense to
predict the ex-post Dimson estimate, presumably a better measure of the true beta.
Panel B shows that bdim performs better in explaining its future self than bols
in the least-traded decile, at least on the R2 metric. The Dimson estimator does
perform worse on the RMSE metric than the OLS estimator in predicting the future
Dimson estimate. Even in the least-traded decile, the Dimson estimator should not
be used as a direct proxy. Instead, it should be appropriately mean-adjusted first.

Moreover, in general, it is never advisable to use the Dimson estimator non-
discriminately on all stocks. This is because bdim performs much worse even than
the plain bols in the other nine deciles.

However, bswa ultimately obsoletes bdim on both the R2 and the RMSE metrics
and does so in all deciles. Ergo, even though non-synchronicity is concerning for
stocks that almost never trade, the bswa estimator remains preferred to bdim. It
may be possible to combine the outlier handling of bsw and the non-synchronicity
aspect of bdim to offer an even better estimator. This is left to future research.

A final word of caution: Although the Dimson estimator cannot predict its own
future realizations as well as other daily estimators can predict them, the evidence
here pertains only to publicly-traded stocks. The poor performance of bdim is
perhaps not surprising, because stocks that do not trade are still marked-to-market
at the end of the day. The Dimson estimator may remain more useful for assets in
which daily asset returns are not readily available and even monthly asset returns
are of dubious quality.
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With bols With bswa With bdim

$V γb R̄2 RMSE γb R̄2 RMSE γb R̄2 RMSE

Panel A: Predicting Future Calendar Year OLS Beta (bols)

Lo 1 0.09 0.007 0.773 0.44 0.047 0.601 0.11 0.020 0.890
2 0.22 0.042 0.709 0.53 0.092 0.580 0.16 0.040 0.842
· · ·
5 0.53 0.274 0.608 0.84 0.336 0.516 0.34 0.159 0.759
6 0.55 0.304 0.561 0.83 0.362 0.477 0.36 0.192 0.711
· · ·
9 0.60 0.387 0.478 0.86 0.438 0.411 0.45 0.318 0.598
Hi 10 0.68 0.493 0.432 0.94 0.523 0.384 0.54 0.439 0.517

Panel B: Predicting Future Calendar Year Dimson Beta (bdim)

Lo 1 0.14 0.009 0.921 0.49 0.036 0.779 0.14 0.017 1.012
2 0.26 0.033 0.877 0.57 0.062 0.772 0.16 0.023 0.983
3 0.38 0.084 0.806 0.64 0.115 0.715 0.24 0.057 0.926
· · ·

Table 9: Performance of Dimson Estimator, 1974 to 2019.

Description: Decile 1 (10) are the least (most) traded stocks, as in Table 8. All betas are calculated
over all daily stock returns within their calendar years. Panel A predicts the future calendar-year OLS
beta. Panel B predicts the future Dimson beta. At least 100 days of complete data had to be available
to calculate beta. The dependent beta variables were for the succeeding calendar year. γb and R̄2 are
from the forecasting regression. RMSE is the root-mean-squared error (difference). Predictions in
each row are for the same firm-years and thus directly comparable. This is obviously not the case for
columns.

Interpretation: Panel A: The high-trading decile (where non-synchronicity is implausible) shows the
bdim efficiency loss. Panel B: bdim cannot predict its future self even in the low-trading decile better
than bswa can predict it.
Source: 1dimson.R, June 1, 2021

5.5.2 More Beta Estimators

The bsw and bswa estimators also outperform other estimators:

Martin and Simin (2003) propose a more complex nonlinear two-equation robust
estimator. Unfortunately, the computation of their betas requires access to a
supercomputer and is thus unlikely to find widespread use. Fortunately, the
authors generously shared their estimates. Their estimators perform about
as well as the bvck and bsw estimates. They perform worse than the bswa
estimates, both in predicting ex-post OLS betas and in predicting themselves.

Ait-Sahalia et al. (2014) develop a nonparametric time-series regression esti-
mator without the usual assumption of piecewise linearity, using intra-day
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data. Unfortunately, these betas are difficult to replicate, partly because
the TAQ input data require extensive cleaning, partly because the data are
voluminous, and partly because the econometrics is complex. Fortunately,
the authors also generously shared their estimates. These estimates perform
poorly in the task set to them here. They underperform even the historical
OLS betas in predicting the future OLS betas.

Cosemans et al. (2016) suggest a number of different estimators, based on under-
lying stock fundamentals, business-cycle variables, and Bayesian techniques.
The data frequencies range from semi-annual to intra-day data. These esti-
mators are quite complex. Fortunately, the authors also generously shared
their estimates for the S&P 100 stocks. The Cosemans et al. (2016) betas
underperforms both bsw and bswa (and on both performance metrics) when
predicting the future bols.14

Fundamentals-Smoothed Betas, i.e., estimates in which CRSP or Compustat
data are used, yield an improvement if the inferior monthly-frequency,
stock return-based betas are used. They yield no economically meaningful
improvements for daily slope-winsorized betas.

In addition, I explored other estimators and tests. The results always showed
superior slope-winsorized beta performance. For example, I also investigated
whether selection or survival effects mattered. For example, I explored predicting
future betas calculated over one month of daily stock returns instead of one year.
For example, I experimented with removing instead of winsorizing observations,
with firm-year specific winsorization (of all kinds) and/or with industry-related,
peer-related, marketcap-related, volatility-related, and trading volume based
winsorization. Some tuned versions of bsw and bswa indeed improved modestly
on the bsw and bswa estimators reported here—not surprising given the extra
free parameters. However, none improved the bsw and bswa in a meaningful way.

6 Conclusion

The most common Bloomberg (Merrill Lynch) beta estimator, which is prominently
used on many financial websites, performs poorly in forecasting the future market-
beta, as do other betas calculated from monthly stock returns. Betas computed
from daily stock returns perform better. This is the case even if the object of
interest are future betas calculated from monthly stock returns.

Among daily-frequency based beta estimators, the simple, one-pass, slope-
winsorized bsw and bswa (respectively block-sampled and exponentially

14As with bswa, self-prediction of the Cosemans et al. beta makes little sense, because the perfor-
mance is affected by overlap due to infinite reach-back (use of history).
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age-adjusted) seem to perform best. Most importantly, these estimators are
also trivially easy to implement. The complete R code is 10 lines long and in
the Appendix. Updated market-betas and code can be also downloaded from
https://www.ivo-welch.info/research/betas/. There is no reason not to use them.

A Appendix: Implementation of BSWA

The complete R code is
## _bswb is an internal function doing most of the work
.bswb <- function( ri, rm, Delta, rho ) {

## function to winsorize r based on lower and upper bounds
wins.rel <- function( r, rmin, rmax ) {

rlo <- pmin(rmin,rmax); rhi <- pmax(rmin,rmax)
ifelse( r<rlo, rlo, ifelse( r>rhi, rhi, r ) )

}

wri <- wins.rel( ri, (1-Delta)*rm, (1+Delta)*rm )

## note: ri and rm must be ordered in time (increasing)
bsw <- coef(lm( wri ~ rm, w=exp(-rho*(length(ri):1)) ))[2]

}

## the externally visible wrapper functions
bsw <- function( ... ) .bswb( ... , Delta=3.0, rho=0.0 )
bswa <- function( ... ) .bswb( ..., Delta=3.0, rho=2.0/256.0 )

# Test:
# d <- read.csv("dailyreturns.csv")
# with(d, cat("BSW Beta=", bsw(ri, rm), "; BSWA Beta=", bswa(ri,rm),"\n"))

Stock returns can also be added progressively to update the estimator in time,
so an alternative C program (not shown) takes less than one minute on a good
desktop computer to calculate all bswa betas for the entire CRSP universe.

The implementation code is also available from the author’s and journal’s
website.
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